{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "cbfb2b9c-d3c1-4b7c-b404-a909240d6505",
"metadata": {
"tags": [
"remove-cell"
]
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"---------------------------------\n",
"Working on the host: Joachims-MacBook-Pro.local\n",
"\n",
"---------------------------------\n",
"Python version: 3.10.2 | packaged by conda-forge | (main, Feb 1 2022, 19:30:18) [Clang 11.1.0 ]\n",
"\n",
"---------------------------------\n",
"Python interpreter: /opt/miniconda3/envs/srh/bin/python\n"
]
}
],
"source": [
"%matplotlib inline\n",
"# Load the \"autoreload\" extension\n",
"%load_ext autoreload\n",
"# always reload modules\n",
"%autoreload 2\n",
"# black formatter for jupyter notebooks\n",
"#%load_ext nb_black\n",
"# black formatter for jupyter lab\n",
"%load_ext lab_black\n",
"\n",
"%run ../../src/notebook_env.py"
]
},
{
"cell_type": "markdown",
"id": "be161b80-e52b-4094-b863-07472c4b8061",
"metadata": {},
"source": [
"# Maße für die Relation zwischen Variablen"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7c213008-74ad-480d-a507-a85e6754c5ce",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns"
]
},
{
"cell_type": "markdown",
"id": "1f3853af-ec14-483b-84b1-eef96c4bad9f",
"metadata": {
"tags": []
},
"source": [
"In den vorangegangenen Abschnitten haben wir uns hauptsächlich auf eine einzelne Variable, die Beschreibung einer Verteilung und die Berechnung von zusammenfassenden Statistiken konzentriert. Statistiken, die eine einzelne Variable beschreiben, werden als univariate Statistiken bezeichnet. Untersucht man die Beziehung zwischen zwei Variablen, spricht man von bivariater Statistik. Wenn die Beziehungen zwischen mehreren Variablen gleichzeitig untersucht werden, spricht man von multivariaten Statistiken. **Maße für die Relation** zwischen Variablen bieten die Möglichkeit, die Größe der Verknüpfung zwischen zwei Variablen zusammenzufassen."
]
},
{
"cell_type": "markdown",
"id": "5202e5fa-2317-4208-b13c-84f264c8ba40",
"metadata": {},
"source": [
"## Kovarianz\n",
"\n",
"Die Kovarianz ist ein Maß für die gemeinsame Variabilität von zwei Variablen. Die Kovarianz kann jeden Wert im Intervall $]-\\infty \\ $,$ \\ +\\infty[$ annehmen.\n",
"\n",
"Die Kovarianz ist positiv, wenn die größeren/kleineren Werte der einen Variablen hauptsächlich mit den größeren/kleineren Werten der anderen Variablen übereinstimmen. Die Kovarianz ist negativ, wenn die Variablen tendenziell ein entgegengesetztes Verhalten zeigen. Die Kovarianz ist negativ, wenn die größeren Werte der einen Variablen hauptsächlich mit den kleineren Werten der anderen Variablen übereinstimmen.\n",
"\n",
"Die Kovarianz, $s_{xy}$\n",
"wird durch die folgende Gleichung berechnet"
]
},
{
"cell_type": "markdown",
"id": "e31f48b0-fd2f-4711-bf1d-4a4eff92bd8a",
"metadata": {},
"source": [
"$$s_{xy} = \\frac{\\sum_{i=1}^n (x_i - \\bar{x})(y_i - \\bar{y})}{n-1}$$"
]
},
{
"cell_type": "markdown",
"id": "0775c410-734e-4d84-87a2-35b71a794bf2",
"metadata": {},
"source": [
"Die **normalisierte Version der Kovarianz** wird **Korrelationskoeffizient** genannt, dessen Größe die Stärke einer linearen Beziehung zwischen zwei Variablen angibt."
]
},
{
"cell_type": "markdown",
"id": "4146e5b1-2e54-4828-a468-92ac0b9dab61",
"metadata": {
"tags": []
},
"source": [
"## Korrelation"
]
},
{
"cell_type": "markdown",
"id": "111689b9-ce6e-4028-8a33-40466f9688e6",
"metadata": {},
"source": [
"### Pearson-Produkt-Moment-Korrelationskoeffizient"
]
},
{
"cell_type": "markdown",
"id": "0a1a8330-3a26-470e-91e8-6580a4fbe779",
"metadata": {},
"source": [
"Die Korrelation ist eine weit verbreitete Methode zur Untersuchung der Beziehung zwischen **quantitativen Variablen**. Die am häufigsten verwendete Statistik ist der **lineare Korrelationskoeffizient** $r$, der zu Ehren seines Entwicklers, Karl Pearson, auch als Pearson-Produkt-Moment-Korrelationskoeffizient bekannt ist. Er ist gegeben durch"
]
},
{
"cell_type": "markdown",
"id": "1afc2294-f1ad-4eab-84da-0e8117f2e068",
"metadata": {},
"source": [
"$$ r = \\frac{\\sum_{i=1}^n (x_i - \\bar{x})(y_i - \\bar{y})}{\\sqrt{\\sum_{i=1}^n (x_i - \\bar{x})^2} \\sqrt{ \\sum_{i=1}^n (y_i - \\bar{y})^2}} = \\frac{s_{xy}}{s_x s_y}$$"
]
},
{
"cell_type": "markdown",
"id": "3cbfe7a5-2cc8-4f26-a676-5b486fca5972",
"metadata": {},
"source": [
"wobei $s_{xy}$ die Kovarianz von $x$ und $y$ und $s_x$ und $s_y$ die Standardabweichung von $x$ bzw. $y$ sind. Durch Division durch die Standardabweichungen der Stichprobe, $s_x$ und $s_y$, wird der lineare Korrelationskoeffizient, $r$, skalenunabhängig und nimmt Werte zwischen $-1$ und $1$ an."
]
},
{
"cell_type": "markdown",
"id": "f715682b-6a26-4418-960d-1a669930ca12",
"metadata": {},
"source": [
"Der lineare Korrelationskoeffizient misst die Stärke der linearen Beziehung zwischen zwei Variablen. Liegt $r$ nahe bei $\\pm 1$, sind die beiden Variablen stark korreliert, und in einem Streudiagramm liegen die Datenpunkte um eine Linie herum. Liegt $r$ weit von $\\pm 1$ entfernt, sind die Datenpunkte weiter gestreut. Liegt $r$ nahe bei $0$, sind die Datenpunkte im Wesentlichen um eine horizontale Linie gestreut, was darauf hindeutet, dass es fast keine lineare Beziehung zwischen den Variablen gibt."
]
},
{
"cell_type": "markdown",
"id": "977881a6-fe62-4b7d-abd5-b02390f50943",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "7331ba2a-b247-483c-8d4a-6a4b57fce2ab",
"metadata": {},
"source": [
"Eine interessante Eigenschaft von $r$ ist, dass sein Vorzeichen die Steigung der linearen Beziehung zwischen zwei Variablen widerspiegelt. Ein positiver Wert von $r$ deutet darauf hin, dass die Variablen **positiv linear korreliert** sind, was bedeutet, dass $y$ tendenziell linear zunimmt, wenn $x$ zunimmt. Ein negativer Wert von $r$ deutet darauf hin, dass die Variablen **negativ linear korreliert** sind, was bedeutet, dass $y$ tendenziell linear abnimmt, wenn $x$ zunimmt.\n",
"\n",
"Es gibt keine eindeutige Klassifizierungsregel für die Größe einer linearen Beziehung zwischen zwei Variablen. Die folgende Tabelle kann jedoch als Faustregel für den Umgang mit den numerischen Werten des Pearson-Produkt-Moment-Korrelationskoeffizienten dienen."
]
},
{
"cell_type": "markdown",
"id": "7308068d-e82d-4777-a683-a4d6f792e2b3",
"metadata": {},
"source": [
"|||\n",
"|---|---|\n",
"|starke lineare Korrelation|$r > 0,9$|\n",
"|mittlere lineare Korrelation|$0,7 < r \\le 0,9$|\n",
"|schwache lineare Korrelation|$0,5 < r \\le 0,7$|\n",
"|keine oder zweifelhafte lineare Korrelation|$0 < r \\le 0,5$|"
]
},
{
"cell_type": "markdown",
"id": "96dbc6c0-4010-4a31-a4bb-4ac7b2002d4c",
"metadata": {},
"source": [
"Die Pearson-Korrelation setzt voraus, dass die Variablen annähernd normalverteilt sind, und sie ist bei Vorhandensein von Ausreißern nicht robust.\n",
"\n",
"In einem späteren Abschnitt über lineare Regression wird das Bestimmtheitsmaß, $R^2$\n",
"ein anschauliches Maß für die Qualität von linearen Modellen. Es besteht eine enge Beziehung zwischen $R^2$ und dem linearen Korrelationskoeffizienten $r$. Das Bestimmtheitsmaß $R^2$ ist gleich dem Quadrat des linearen Korrelationskoeffizienten $r$."
]
},
{
"cell_type": "markdown",
"id": "f8e0552c-c2f3-4f55-97d8-664f48051f69",
"metadata": {},
"source": [
"$$\\text{Determinationskoeffizient} (R^2) = r^2$$"
]
},
{
"cell_type": "markdown",
"id": "e3c07922-9459-42c6-9271-1c515c8825f5",
"metadata": {},
"source": [
"### Korrelationskoeffizient nach Pearson: Ein Beispiel"
]
},
{
"cell_type": "markdown",
"id": "e9332330-78b3-4106-906a-ecd0ffb6886c",
"metadata": {},
"source": [
"Um ein Gefühl dafür zu bekommen, berechnen wir den Pearson-Produkt-Moment-Korrelationskoeffizienten in einem Beispiel. Dazu laden wir den `students` Datensatz in unseren Arbeitsbereich (Sie können die Datei `students.csv` hier herunterladen)."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "05947ba4-c3f8-48c5-8c19-8b6521d46949",
"metadata": {},
"outputs": [],
"source": [
"# Einlesen der Daten als Dataframe\n",
"students = pd.read_csv(\"../../data/students.csv\", index_col=0)"
]
},
{
"cell_type": "markdown",
"id": "21af96c2-dd53-4402-8bff-2295819334a5",
"metadata": {},
"source": [
"Der `students` Datensatz besteht aus $8239$ Zeilen, von denen jede einen bestimmten Studenten repräsentiert, und $16$ Spalten, von denen jede einer Variable/einem Merkmal entspricht, das sich auf diesen bestimmten Studenten bezieht. Diese selbsterklärenden Variablen sind: *stud_id, name, gender, age, height, weight, religion, nc_score, semester, major, minor, score1, score2, online_tutorial, graduated, salary*.\n",
"\n",
"In diesem Beispiel wird **die lineare Beziehung zwischen dem Gewicht und der Größe der Studenten** untersucht. Dazu wählen wir zufällig $37$ Studenten aus und extrahieren die Variablen `height` und `weight` aus dem Datensatz."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f4be4038-dca0-4db6-aca0-35798d48800f",
"metadata": {},
"outputs": [],
"source": [
"# Wähle zufällige Stichprobe n=37 aus ohne doppelt auszuwählen\n",
"students_sample = students.sample(37, replace=False, random_state=1)\n",
"\n",
"# Lese height und weight der Probe aus dem dataframe in Listen ein\n",
"height_sample = students_sample[\"height\"]\n",
"weight_sample = students_sample[\"weight\"]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3846805c-8ecd-4233-ac99-735813c7416b",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAF9CAYAAADP4URIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwUElEQVR4nO3de5zdVXno/89DGHA0ynCzNnOMgD+JWhObOl4qVFHR4KUSYzlqq6JSkWO9nFZGCVgFtUQJXrGCaA8KFrVy0hRFGBAUQX4oibHEqlG0XJygchsCOEBMnvPH9zuws5lLdvKdff28X6957Zm1vvu7nx3Wa3j2mmetFZmJJEmSpJ23S6sDkCRJkrqFybUkSZJUEZNrSZIkqSIm15IkSVJFTK4lSZKkiphcS5IkSRXZtdUBVGmfffbJ/fbbr9VhSJIkqcutXbv21szct769q5Lr/fbbjzVr1rQ6DEmSJHW5iLhhsnbLQiRJkqSKmFxLkiRJFTG5liRJkipici1JkiRVxORakiRJqojJtSRJklQRk2tJkiSpIibXkiRJUkVMriVJkqSKdNUJjZIkSeosq9eNsnJkAxvHxpk30M/wkgUsXTzY6rB2mMm1JEmSWmL1ulGWr1rP+OYtAIyOjbN81XqAjk2wLQuRJElSS6wc2fBAYj1hfPMWVo5saFFEO8/kWpIkSS2xcWy8ofZOYHItSZKklpg30N9QeycwuZYkSVJLDC9ZQH/fnG3a+vvmMLxkQYsi2nkuaJQkSVJLTCxadLcQSZIkqQJLFw82nEy38/Z9JteSJEnqGO2+fZ8115IkSeoY7b59n8m1JEmSOka7b99nci1JkqSO0e7b95lcS5IkqWO0+/Z9LmiUJElSx2j37ftMriVJktRRdmT7vmaxLESSJEmqiMm1JEmSVBGTa0mSJKkiJteSJElSRUyuJUmSpIo0PbmOiLkR8emI+G1E3BURIxHx1Jr+iIgTIuLGiPh9RFwSEU9sdpySJElSo1oxc/1/gTcAK4FXAr8BroiIiZ2/3we8FzgVeDWwB3BpROzR/FAlSZKk7dfU5Doinga8CHhXZp6amRdn5pHAj4EPRsQjgWOBEzPzU5l5PrAEeCRwVDNjlSRJkhrV7ENkDiwfR+ravwccDTwLmAucP9GRmXdExOXAYcDHmhGkJElSL1u9brRtT0Bsd80uC7mpfJxf174/8CjgGeXPv6zr/xUPJuaSJEmaJavXjbJ81XpGx8ZJYHRsnOWr1rN63WirQ+sIzU6urwF+DnwmIoYiYiAi3gK8pCae+zLz/rrn3UWRfEuSJGkWrRzZwPjmLdu0jW/ewsqRDS2KqLM0NbnOzPuAZcAWikT7DuBI4JTykq1ATvLUKPse2hFxdESsiYg1t9xyS/VBS5Ik9ZCNY+MNtWtbTd8tJDP/KzOfSlEackBmPpsiod4K3A3sHhF9dU+bC9w5xf3OzMyhzBzad999ZzN0SZKkrjdvoL+hdm2r2buFPDwiXhcR8zLzpsz877JrEcWOIT+lmKXev+6pBwD+LUKSJGmWDS9ZQH/fnG3a+vvmMLxkwRTPUK1mz1xvBs6g2L8agIjYn6Lm+uvAVcC9wNKa/j2B5wKXNjNQSZKkXrR08SArli1kcKCfAAYH+lmxbKG7hWynpm7Fl5mbI+LzwAkR8TtgE/AR4Bbg45l5d0ScBnwoIrZSLH48obzu882MVZIkqVctXTxoMr2Dmr3PNcBxFDXWK4GHAZcBw5l5W9l/PEX99bEUtdZXAUdm5qQ115IkSVK7iMzJNufoTENDQ7lmzZpWhyFJkqQuFxFrM3Oovr3pu4VIkiRJ3crkWpIkSaqIybUkSZJUEZNrSZIkqSIm15IkSVJFTK4lSZKkiphcS5IkSRUxuZYkSZIqYnItSZIkVcTkWpIkSaqIybUkSZJUEZNrSZIkqSIm15IkSVJFTK4lSZKkiphcS5IkSRUxuZYkSZIqYnItSZIkVcTkWpIkSarIrq0OQJIkqZesXjfKypENbBwbZ95AP8NLFrB08WCrw1JFTK4lSZKaZPW6UZavWs/45i0AjI6Ns3zVegAT7C5hWYgkSVKTrBzZ8EBiPWF88xZWjmxoUUSqmsm1JElSk2wcG2+oXZ3H5FqSJKlJ5g30N9SuzmNyLUmS1CTDSxbQ3zdnm7b+vjkML1nQoohUNRc0SpIkNcnEokV3C+leJteSJElNtHTxoMl0F7MsRJIkSaqIybUkSZJUkaYn1xExJyLeHRHXRcTdEfH9iHh+Tf9QROQkX6c2O1ZJkiSpEa2ouR4GPgS8D/gB8Cbgooh4ZmauAxYB9wCH1j1vY1OjlCRJkhrUiuT6SODczDwZICK+DRwMHAW8jSK5/nFmXt2C2CRJkqQd1oqa692BTRM/ZOYW4E5gr7JpEXBtC+KSJEmSdkorkut/Bl4XES+IiD0i4p3AnwBfKfsXAo+NiB9FxP1lbfaRLYhTkiRJakgrykJOB54PfKum7b2ZeX5EzAP2AZ4ALAfuAF4DfCEiMjPPbnq0kiRJ0nZqanIdEQGMAE8G3gr8lGLh4vsjYgw4CzgMuDYzby6f9q0y6X4/8JDkOiKOBo4GmD9//my/BUmSJGlKzZ65Pohi8eL/zMyvlW3fiYhdgVOAL2bmyCTPuwg4LCLmZubdtR2ZeSZwJsDQ0FDOXuiSJEnS9Jpdc/3Y8rF+J5ArgYcDB0TEMRGxe11/PzBOsUWfJEmS1JaanVz/vHw8qK79mcAfgMdT1GS/ZKKjLCVZBlyRmc5MS5IkqW01tSwkM9dGxAXAZyJiL4qa60OA9wCfBM6nmMU+IyL2BG4G3kKxPd/BzYxVkiRJalQrdgs5guKExhMo9rb+BfAO4LOZmRFxOHAy8AFgb+CHwAszc00LYpUkSZK2W9OT68wcB95Vfk3WfztwTFODkiRJ6kKr142ycmQDG8fGmTfQz/CSBSxdPNjqsLpaK2auJUmSNMtWrxtl+ar1jG/eAsDo2DjLV60HMMGeRa04oVGSJEmzbOXIhgcS6wnjm7ewcmRDiyLqDSbXkiRJXWjj2HhD7aqGybUkSVIXmjfQ31C7qmFyLUmS1IWGlyygv2/ONm39fXMYXrKgRRH1Bhc0SpIkdaGJRYvuFtJcJteSJEldauniQZPpJrMsRJIkSaqIybUkSZJUEZNrSZIkqSIm15IkSVJFTK4lSZKkiphcS5IkSRUxuZYkSZIq4j7XkiSpa6xeN+qhKWopk2tJktQVVq8bZfmq9Yxv3gLA6Ng4y1etBzDBVtNYFiJJkrrCypENDyTWE8Y3b2HlyIYWRaReZHItSZK6wsax8YbapdlgWYgkSZpVzaqDnjfQz+gkifS8gf7KX0uaijPXkiRp1kzUQY+OjZM8WAe9et1o5a81vGQB/X1ztmnr75vD8JIFlb+WNBWTa0mSNGuaWQe9dPEgK5YtZHCgnwAGB/pZsWyhixnVVJaFSJKkWdPsOuiliwdNptVSzlxLkqRZM1W9s3XQ6lYm15IkadZYB61eY1mIJEmaNRMlGp6aqF5hci1JkmaVddDqJZaFSJIkSRUxuZYkSZIq0vTkOiLmRMS7I+K6iLg7Ir4fEc+v6Y+IOCEiboyI30fEJRHxxGbHKUmSJDWqFTPXw8DJwP8BlgK/BC6KiMVl//uA9wKnAq8G9gAujYg9mh+qJEmStP1akVwfCZybmSdn5reA1wG/AY6KiEcCxwInZuanMvN8YAnwSOCoFsQqSZIkbbdWJNe7A5smfsjMLcCdwF7As4C5wPk1/XcAlwOHNTdMSZIkqTGtSK7/GXhdRLwgIvaIiHcCfwJ8BTiwvOaXdc/5VU2fJEmS1JZakVyfDlwJfAsYAz4B/GNZAvIo4L7MvL/uOXeVfQ8REUdHxJqIWHPLLbfMWtCSJEnSTJp6iExEBDACPBl4K/BT4FDg/RExBgSQkz0V2DrZPTPzTOBMgKGhocmeK0mSOtDqdaOe7KiO0+wTGg8CDgb+Z2Z+rWz7TkTsCpwCHA/sHhF9mbm55nlzKeqyJUlSD1i9bpTlq9YzvnkLAKNj4yxftR7ABFttrdllIY8tH6+ua78SeDjFrHUA+9f1HwBsmN3QJElqrdXrRjnow5ex/3EXcNCHL2P1utFWh9QyK0c2PJBYTxjfvIWVI6YDam/NTq5/Xj4eVNf+TOAPwCrgXor9rwGIiD2B5wKXNiE+SZJaYmKmdnRsnOTBmdpeTbA3jo031C61i6aWhWTm2oi4APhMROxFUXN9CPAe4JOZ+euIOA34UERspUjGT6DYuu/zzYxVkqRmmm6mthfLIOYN9DM6SSI9b6B/2udZp61Wa8VuIUcAZ1Ekzd8EXgG8g+LkRijqrj9GcZjMuRS11odmpjXXkqSu5UzttoaXLKBvl9imrW+XYHjJgimf4+y/2kHTk+vMHM/Md2XmYGb2Z+aizDwjM7Ps/0NmHpeZj8nMuZn5osz8WbPjlCSpmaaakZ1pprarxQw/17FOW+2gFTPXkiSpzvCSBfT3zdmmrb9vzrQztd1s5cgGNm/ZdofdzVty2kTZ2X+1A5NrSZLawNLFg6xYtpDBgX4CGBzoZ8WyhT1bL7wjibKz/2oHzd7nWpIkTWHp4sGeTabr7ciCxuElC7bZGxt6e/ZfreHMtSRJHa4b98fekTIZZ//VDpy5liSpg3XrSYYTsTe6rZ6z/2o1k2tJkjpYN++PbaKsTmRZiCRJHcwdMqT2YnItSVIHc4cMqb2YXEuS1MHcH1tqL9ZcS5LUwXZ04Z+k2bHdyXVEvB64IDNvm6TvMcBrM/PUKoOTJEkzc+Gf1D4aKQs5Czhgir5nAB/a+XAkSZKkzjXtzHVEXAo8feJH4NsRsXWSSx8OrK04NkmSJKmjzFQW8nbgCIrE+n3Al4Ff112zBRgDvlJ1cJIkSVInmTa5zsyfACcBREQCn8/Mzj9TVZIkSZoF272gMTMnkuy5wACT1Gtn5o2VRSZJkiR1mEZ2CzkQ+FfgzybrBhKYM0mfJEmS1BMa2ef6s8A84FjgemCyhY2SJElSz2okuX4mcGRmfm22gpEkSZI6WSP7XP8OGJ+tQCRJkqRO18jM9UeB90fENZn529kKSJIkdZfV60Y9nl09Y6ZDZNZTLFSc8GTg1xFxA/D7usszM59acXySJPWMbkxCV68bZfmq9Yxv3gLA6Ng4y1etB+j49yZNZqaZ67Vsm1x7CqMkSbOgW5PQlSMbHnhPE8Y3b2HlyIaOfl/SVGY6ROYN9W0REZmZ5ff9wC6Zec/shCdJUm/o1iR049jky7Wmapc63XYvaIyI3SLiM8DVNc0HAbdGxCkR4R7XkiTtoG5NQucN9DfULnW6RnYLORn4a+Dsmra1wD8ARwHHVxiXJEk9pVuT0OElC+jv23b+rb9vDsNLFrQoIml2NZJcvwr4+8z854mGzLwjM08HjgPeVHVwkiT1im5NQpcuHmTFsoUMDvQTwOBAPyuWLezoUhdpOo1sxTcA/GaKvhuBP9rpaCRJ6lETyWa37RYCxXvrhvchbY9GkusfAm+JiIsmFjTWOBpYN9MNIuIQ4NvTXLIfsC9wzSR9H83MY7crUkmSOpBJqNT5Gkmu3w9cDPw0Ir5JcWLjvsCLgccDL9qOe/wQ+PO6tocB55V9NwEvAO4BDq27bmMDsUqSJElNt93JdWZ+JyIOBpZTLGzcC7gTuAp4Y2Z+fzvusYltdxshIj5BsZf232Tm1ohYBPw4M6+e5BaSJElS22pk5prM/AHwiqpePCKeDLwN+LvMvKVsXgRcW9VrSJIkSc0y0/Hny4DLMnOs/H5ambmqwdf/J+DnwOdq2hYC90XEjyiOW78R+GBmfrHBe0uSJElNNdPM9XnAs4AflN9PJ4HtPkgmIvYHXg4cnZlby7Z5wD7AEyjKT+4AXgN8oTwY8uxJ7nM0xYJK5s+fv70vL0mSJFUuHrrxR01nxOOAmzPz/vL7aWXmDdv9whEnUyTFg5l5X9n2cOAvgGsz8+aaay8EDszMx093z6GhoVyzZs32hiBJkiTtkIhYm5lD9e3TzlzXJcsfAb4JXJSZv6sgpqXA6onEuny93wMjk1x7EXBYRMzNzLsreG1JkiSpco2c0DgX+DSwMSKuiYiTIuJZERGNvmhEzAeeBKyqaz8wIo6JiN3rntIPjFNs0SdJkiS1pe1OrjPzZRTb7x0KXAK8BLgS+F1EfCkiXtPA6z6jfKzfvm8QOL28NwBl8r4MuGKSw2skSZKkttHIzDWZ+YfM/E5mHp+ZTwcOo9jt46+BLzVwq6cAt2bmbXXt36VI2M+IiDdFxIuBf6fYnu+ERmKVJEmSmm2797mOiN0oZpz/AjgYeDbwKOBXwFnA5Q287qOBsfrGzNwSEYcDJwMfAPamOLnxhZnpSkVJkiS1tUYOkdkE9AE/Ab4DnANcXrurx/bKzLdO03c7cEyj95QkSZJarZHk+iKKGev/D7id4ujz2yJiU2a60FCSJEk9r5EFjUszcx+KQ2VWAX8CnAvcERE/iIiVsxSjJEmS1BEaWtAIkJn/mZmfpFjE+FqKva+HgH+oODZJkiSpozS6oPHZwPOA5wNPpzjy/HvAu4ELZyNASZIkqVM0UnM9BuwOXE9xiuIpwGXWW0uSJEmFRpLr5RRHn2+YrWAkSZKkTrbdyXVmfjIido2I1wIvAB4DvINiB5G1mXntLMUoSZIkdYTtXtAYEXsDV1McGPNnwIuAR1IcTX5VRDxzViKUJEmSOkQju4V8HNiDYp/rpwFRtv8V8H2KUxUlSZKkntVIcv2XwAmZeQPFLiEAZOZ9wEcpEm5JkiSpZzWSXM8B7p2ib1cenMmWJEmSelIjyfVlwPsjYs+atoyIPuCdwOWVRiZJkiR1mEa24nsXxYExvwT+/7Ltg8ATgT2Bg6oNTZIkSeosjWzF98uIWAT8PXAIcB3wR8DXgY9l5k2zEqEkST1i9bpRVo5sYOPYOPMG+hlesoCliwdbHZakBmxXch0RuwL7ZOZvgOUR8S5qFjVSJNkm15Ik7aDV60ZZvmo945u3ADA6Ns7yVesBTLClDjJjch0RrwA+A3wXeFVEzAFWUiTXE4sYb4iIJ2XmVAseJUnSNFaObHggsZ4wvnkLK0c2mFxLHWTaBY0R8Wzg3ygS6/fXdT89M3cBngL8MXDkrEQoSVIP2Dg23lC7pPY0024hw8AlmfmqzPzZZBdk5k+ALwGvqjo4SZJ6xbyB/obaJbWnmZLrZwP/sh33+QawaOfDkSSpNw0vWUB/35xt2vr75jC8ZEGLIpK0I2aquX4U8NvahszcEhGvodiSb8IdgB+tJbWcuy2oU02MU8ev1NlmSq5/A+wHXFnbmJlfrbvuQGC0urAkqXHutqBOt3TxoGNV6nAzlYV8F3jTdBdExC7A3wIXVxWUJO2I6XZbUHdZvW6Ugz58GfsfdwEHffgyVq9zfkdSe5gpuT4NODgizoqIgfrOiHgY8DmKHUNOqz48Sdp+7rbQGyb+QjE6Nk7y4F8oTLAltYNpy0Iyc01E/B3waeAVEXEpxcmMCTwOeBHwCODNmenUkKSWmjfQz+gkibS7LXQX94OW1M5mmrkmMz8HPINiR5DnU2zP927gZcAlwLMy85zZDFKStoe7LfQG/0IhqZ1t1/HnmfmfwGsByvKQOZl52yzGJUkN25ndFtxlpHP4FwpJ7Wy7kutamTk2C3FIUiV2ZLcFdxnpLMNLFmzz3wv8C4Wk9jFjWYgkdTt3GeksSxcPsmLZQgYH+glgcKCfFcsW+kFIUltoeOZ6Z0TEIcC3p7lkP+BG4HjgLcA+wPeAt091/Lok7SxreDuP+0FLaldNTa6BHwJ/Xtf2MOC8su8m4H3AccB7gOuB9wKXRsSTM/PO5oUqqVdYwytJqkpTk+vM3ARcXdsWEZ+g2Nrvbyi29TsWODEzP1X2XwHcABwFfKyZ8UrqDc2u4XXxpCR1r5bWXEfEk4G3Ae/NzFuAZwFzgfMnrsnMO4DLgcNaEqSkrtfMGl4PQJGk7tbsspB6/wT8nOKUR4ADy8df1l33K+DwZgUlqfc0q4bXA1Akqbu1bOY6IvYHXg58NDO3ls2PAu7LzPvrLr+r7JvsPkdHxJqIWHPLLbfMXsCSVAEXT0pSd2vlzPWbgTuAL9W0BUX9db0Atk7STmaeCZwJMDQ0NNlzJbWYNcYPcvGkJHW3VtZcLwVWZ+Z9NW13ArtHRF/dtXPLPkkdxhrjbXlEuyR1t5Yk1xExH3gSsKqu6xcUs9T717UfAHiag9SBPKBlWx6AIkndrVVlIc8oH79f134VcC/FrPYpABGxJ/Bc4KRmBSepOtYYP5QHoEhS92pVcv0U4NbMvK22MTPvjojTgA9FxFaKnUROADYBn29+mJJ2ljXGkqRe0qqa60cDY1P0HU9xWMyxwLkUtdaHejqj1JmsMZYk9ZKWzFxn5lun6fsDxfHnxzUvIkmzZaL8wd1CJEm9oNWHyEjqAdYYS5J6RUuPP5ckSZK6icm1JEmSVBGTa0mSJKkiJteSJElSRUyuJUmSpIqYXEuSJEkVMbmWJEmSKmJyLUmSJFXE5FqSJEmqiMm1JEmSVBGTa0mSJKkiJteSJElSRUyuJUmSpIrs2uoAJGkqq9eNsnJkAxvHxpk30M/wkgUsXTzY6rAkSZqSybWktrR63SjLV61nfPMWAEbHxlm+aj2ACbYkqW1ZFiKpLa0c2fBAYj1hfPMWVo5saFFEkiTNzJlrqUe1e8nFxrHxhtolSWoHzlxLPWii5GJ0bJzkwZKL1etGWx3aA+YN9DfULklSOzC5lnpQJ5RcDC9ZQH/fnG3a+vvmMLxkQYsikiRpZpaFSD2oE0ouJkpU2rl0RZKkeibXUg+aN9DP6CSJdLuVXCxdPGgyLUnqKJaFSD3IkgtJkmaHM9dSD7LkQpKk2WFyLfUoSy4kSaqeybV6Srvv7SxJkjqbybV6hsdpazp+8JIkVcEFjeoZnbC3s1qjEw7VkSR1hpYk1xHxgoj4fkSMR8QNEXFSRMwp+4YiIif5OrUVsap7dMLezmoNP3hJkqrS9LKQiDgIuBA4F1gOPA34ILAVOAlYBNwDHFr31I1NDFNdqFP2dlbz+cFLklSVVsxcfxi4ODPfkJmXZeZK4BPA88r+RcCPM/Pquq8bWxCruoh7O2sqU33A8oOXJKlRTU2uI2Jf4CDgzNr2zDwuMw8pf1wEXNvMuNQbli4eZMWyhQwO9BPA4EA/K5YtdNGa/OAlSapMs8tCFgIB3BMRXwdeCGwCPgN8IDO3ltfcFxE/Ap4M3Ah8MDO/2ORY1YXc21mT8VAdSVJVmp1c71s+nk1Rc/0x4LnAe4HxiDgH2Ad4AkU99h3Aa4AvRERm5tn1N4yIo4GjAebPnz/rb0BSd/KDlySpCpGZzXuxiNcC5wBnZeabato/DRwJPAY4GLg2M2+u6b8QODAzHz/d/YeGhnLNmjWzErskSZI0ISLWZuZQfXuzZ67vLh8vqmu/BPg74DGZOTLJ8y4CDouIuZl59yT9khrkoSmSJFWv2cn1deXjbnXtfeXjnIg4hmJm+76a/n5gnGKLPkk7ydMqH8oPG5KkKjR7K76fAKPAEXXtL6XYx/qxwOnASyY6IiKAZcAV2cwaFqmLeWjKtjyhUZJUlabOXGfm1og4HvhiRJwOnEdxWMyRwP8CvgNcCZwREXsCNwNvodie7+Bmxip1Mw9N2dZ0HzacvZYkNaLph8iUO378NUWyfAHwV8AxmfnZzNwCHA78O/ABYBXFDiMvzExXKkoV8dCUbflhQ5JUlaYffw6QmV8GvjxF3+3AMc2NSLWsPe1+w0sWbFNzDb19aMrAw/u44/ebJ22XJKkRLUmu1b5c6NYbPDRlW1Ot5nCVhySpUSbX2oa1p73DQ1MedOf4Q2etp2uXJGkqTa+5Vnuz9lS9yBp0SVJVTK61DZMM9aLhJQvo75uzTVsv16BLknacybW2YZKhXrR08SArli1kcKCfAAYH+lmxbKFlM5KkhllzrW240E29yhp0SVIVTK71ECYZkiRJO8bkeie4H7R6keP+Qf5bSJLqmVzvIPeDVi9y3D/IfwtJ0mRc0LiDptsPWupWjvsH+W8hSZqMyfUOcj9o9SLH/YP8t5AkTcaykB00b6Cf0Un+J+p+0GqFZtX+Nnvct3NNs78DJEmTceZ6B7kftNrFRO3v6Ng4yYO1v6vXjVb+Ws0c9818XzvC3wGSpMmYXO8gD51Qu2hm7W8zx3271zT7O0CSNBnLQnaC+0GrHTS79rdZ474Tapr9HSBJqmdyLbWRHakx7tba3259X5Kk7mZZiNQmdrTGuFtrf7v1fUmSupvJtdQmdrTGuFtrf7v1fUmSuptlIVKb2Jka426t/e3W9yVJ6l4m1zuhnffgVeexxliSpM5nWcgOavc9eNV5rDGWJKnzmVzvoHbfg1edxxpjSZI6n2UhO6gT9uBV57HGWJKkzubM9Q6aqg7W+lhJkqTeZXK9g6yPlSRJUj3LQnbQxJ/u3S1EkiRJE0yud4L1sZIkSaplWYgkSZJUkZYk1xHxgoj4fkSMR8QNEXFSRMwp+yIiToiIGyPi9xFxSUQ8sRVxSpIkSY1oenIdEQcBFwI/BV4KfBp4D/De8pL3ld+fCrwa2AO4NCL2aHaskiRJUiNaUXP9YeDizHxD+fNlEbE38LyI+BhwLHBiZn4KICKuAG4AjgI+1oJ4JUmSpO3S1JnriNgXOAg4s7Y9M4/LzEOAZwFzgfNr+u4ALgcOa16kkiRJUuOaXRayEAjgnoj4ekTcGxG/i4gTI2IX4MDyul/WPe9XNX0Sq9eNctCHL2P/4y7goA9fxup1o60OSZIkqellIfuWj2cD51KUeTyXosZ6nCLZvy8z76973l3Aoya7YUQcDRwNMH/+/FkIWe1m9bpRlq9az/jmLQCMjo2zfNV6ALdGlCRJLdXsmeu+8nEkM4cz89uZeSJwBkWCvQuQkzwvgK2T3TAzz8zMocwc2nfffSe7RF1m5ciGBxLrCeObt7ByZEOLIpIkSSo0O7m+u3y8qK79Eopa6zFg94joq+ufC9w5u6GpU2wcG2+oXZIkqVmanVxfVz7uVtc+kUxvppil3r+u/wDAaUkBMG+gv6F2SZKkZml2cv0TYBQ4oq79pcBG4CvAvcDSiY6I2JOiLvvS5oSodje8ZAH9fXO2aevvm8PwkgUtikiSJKnQ1AWNmbk1Io4HvhgRpwPnAYcCRwL/KzM3RcRpwIciYivwc+AEYBPw+WbGqvY1sWhx5cgGNo6NM2+gn+ElC1zMKEmSWq7ph8hk5tkRsRk4HngjcBNwTGZO7H19PMXixWMpaq2vAo7MTGuu9YCliwdNpiVJUtuJzMk25+hMQ0NDuWbNmlaHIUmSpC4XEWszc6i+vdk115IkSVLXMrmWJEmSKmJyLUmSJFXE5FqSJEmqiMm1JEmSVBGTa0mSJKkiJteSJElSRUyuJUmSpIqYXEuSJEkVMbmWJEmSKmJyLUmSJFXE5FqSJEmqiMm1JEmSVBGTa0mSJKkiJteSJElSRUyuJUmSpIqYXEuSJEkVMbmWJEmSKrJrqwOQ2t3qdaOsHNnAxrFx5g30M7xkAUsXD7Y6LEmS1IZMrqVprF43yvJV6xnfvAWA0bFxlq9aD2CCLUmSHsKyEGkaK0c2PJBYTxjfvIWVIxtaFJEkSWpnJtfSNDaOjTfULkmSepvJtTSNeQP9DbVLkqTeZnItTWN4yQL6++Zs09bfN4fhJQtaFJEkSWpnLmiUpjGxaNHdQiRJ0vYwuZZmsHTxoMm0JEnaLpaFSJIkSRUxuZYkSZIq0vTkOiL2joic5Ou8sn9oiv5Tmx2rJEmS1IhW1Fw/tXxcAmyqab+tfFwE3AMcWve8jbMclyRJkrRTWpFcLwJ+m5kXT9P/48y8uokxSZIkSTutFTXXi4Brd6JfkiRJakutSq4fHhFXRcS9EfHriHh3RETZvxB4bET8KCLuj4jrIuLIFsQpSZIkNaSpZSERsQvwZIqa6mOBG4GXACuAh0XE54F9gCcAy4E7gNcAX4iIzMyzJ7nn0cDRAPPnz2/G25AkSZImFZnZvBeLmAM8F7gxM6+raT8deD2wL/AXwLWZeXNN/4XAgZn5+OnuPzQ0lGvWrJmV2CVJkqQJEbE2M4fq25taFpKZWzLzstrEunQR8HDggMwcqU2sa/oPiIi5TQlUkiRJ2gHNLguZB7wM+PfMvKWmq7983CsijgHOysz76vrHKcpJprR27dpbI+KGKmPucfsAt7Y6CLUtx4em4tjQVBwbmk6njY/HTdbY7K34dgc+CzwC+HhN+yuBnwNzgNOB3wL/DlAudFwGXJEz1LBk5r6zEHPPiog1k/25QwLHh6bm2NBUHBuaTreMj6Ym15n53xHxZeCDEbEV+ClwBEVyvRT4LnAlcEZE7AncDLyFYoeRg5sZqyRJktSoVhwicxTwj8D/Bv6YIsF+ZWaeDxARhwMnAx8A9gZ+CLwwM12pKEmSpLbW9OQ6M8eB48uvyfpvB45palCaypmtDkBtzfGhqTg2NBXHhqbTFeOjqVvxSZIkSd2sFSc0SpIkSV3J5LqHRcTLI+KuurahiMhJvk6tuWb3iPh4RPwmIu6KiPPKbRbVJSYbG2X7qyNifUTcGxG/iIi31/U7Nrpc/diIiDdM8TsjIyJrrnNs9IAp/r/SHxEfiYgbIuLOiLgsIhbXXeP46HJTjI1HR8SXIuKO8uu8iNiv7pqOGxuWhfSoiHg2xeE8u2Tm3Jr2NwGfAg6te8rGzLyxvOYs4OXAu4C7KY6vvwd4WmZuaUL4mkXTjI1XAV8GPgpcCLyAYu3EGzLzi+U1jo0uNtnYiIh9gfrTc/cFvgack5lvLq9zbHS5aX53nAG8FngPcB1wLDAELMzMX5fXOD662BS/O3YD1gKPAU4AbgTeATwVWJSZt5XXdd7YyEy/euiLYq/xdwP3AbcDd9f1fwK4eprnPx7YAryqpu0JwFZgWavfn1+zMzaAAG4APl33nH8FvuTY6O6vmX5vTHL9auBnQL9jo/u/ZvjdsQtFQvSBmrZHAvcCxzo+uvtrhrHxSiCBJXXXXw+c0sljw7KQ3vNiYDkwDJw2Sf8i4Nppnv/88vEbEw2Z+Qvgv4DDKopRrTHd2HgaMJ+6ldyZ+TeZ+dryR8dG95rp98YDImIJcDjwzix2hwLHRrebbnzsAuwGbKppu4ci2dqr/Nnx0b2mGxsHUiTOl040ZHE69zU8+N+9I8eGyXXvuQbYPzM/RfGJsd5C4LER8aOIuD8irouII2v6DwR+k5n1R9H/quxT55pubCwqH3eNiMvLsXFTRLy15hrHRvea6fdGrQ8DF2fmSE2bY6O7TTk+MvMPFCczvz0inl4eEPcRoB/4v+Vljo/uNd3vjpsoTuaur5/eH9iv/L4jx0YrDpFRC2Xm6FR95QKBfSj+5LIcuAN4DfCFiMjMPBt4FPCQhW5l22Orj1jNMt3YoKih3QKcD3wGOAl4BfDPEXFbZn4Vx0bXmmFsPCAiDgH+lIeu2XBsdLHtGB8nAc8CfjDxFODIzFxb/uz46FIzjI2LgFuBcyLiGOB3wNuBpwB95TUdOTZMrlVrjOLPLNdm5s1l27fKpPv9wNkUtbeTzVwFRQ2UulMfxQzDmZl5ctl2WUTsTzE2vopjQ3A08OPMvLSu3bHRoyLi4cBVFLW0rwdGKWpt/yUiNmXmf+D46EmZeWtEvAI4B/hJ2fwN4HPAG8qfO3JsmFzrAZn5e2Bkkq6LgMMiYi5wJ8VilHoTfepOd5ePF9W1XwJ8tFz17djoYRHRB7wEOHWSbsdG71pG8dfQZ2TmNWXbZRGxN0UN7n/g+OhZmXllRBxAUQpyX2aOlruD3F5e0pFjw5prPSAiDoyIYyJi97qufmCcYhHKL4DHRER/3TUHABuaEKZa47rycbe69j4enEFwbPS2Pwf2AFZN0ufY6F2PpSgpW1PXfiXF+p65OD56UkTsExFvAB6Rmb+qKSFZBPyo/L4jx4bJtWoNAqdTzD4BEBFBMfNwRRZ74FxKUR7wlzXXPAH4E2pW/KrrfJdi66wj6tpfClxTLlpybPS2Z1DsCPHTSfocG73r5xT/7Z9Z1/5M4BaKSRvHR2/aDTgLeNFEQ0T8OfBnwNfLpo4cG5aFqNZ3KWYTzihXdN8MvIXiU+TBAJn5y4j4GvC5iNiDYtHjCort+1a3ImjNvszcFBEnAydGxCbgcuBVwHMpP4w5NnreU4Cflx/Ct+HY6GnnU8xC/ltEvBfYSJEovRZ4ezleHB89KDM3RsT5FKWFSZFsfwL4T4o1Xh37u8PkWg/IzC0RcThwMvABYG/gh8ALM7P2T3pvBD5OsZ3SLsC3gHdku56UpEpk5gcj4k6K1dzDFDNSr8zM2jpsx0bvejTFouipODZ6UGZujohDgVMoTnftp/jrxhGZeV7NpY6P3vRGioT68xTlhd8A3p2Z99dd01Fjw+PPJUmSpIpYcy1JkiRVxORakiRJqojJtSRJklQRk2tJkiSpIibXkiRJUkVMriVJkqSKmFxLUgUi4vqI+PQk7c+NiN9HxPciYm5ELI2IjIj9IuIN5ff7tCLmKkTEJyLi+vL7L0TEj1sckiS1lPtcS1IFygTzG5n5tpq2Z1IcePBj4EWZeVd5+ukCYB3wKODxwJryCPmOExGPA/bKzHUR8XjgEZl5bavjkqRWMbmWpArUJ9cR8afAtylOsnxhZm5qXXSSpGaxLESSKhYRTwIuBq6jmLHeVNO3KCIujIjby69zIuKPavq/EBGrI+LciNgUEV+JiEPK8pEXRcQPI2I8ItZExPPrXvfREXF2ed+7I+L8iNi/pv/E8nkfj4ixiPhe2b5XGccdEXFbRHwkIs6KiO+U/fuVr//OsvzlNxHx7LLvFRFxTUTcExE3RcQHI6Kv5jUXlO93rHw/F0XEou3tL695TUSsj4h7I+KXEfH2av5LSVL1TK4lqUIRcQBFKchvKBLrO2v6/hS4GtgNOBJ4J/Ac4PKIeETNbV4KPAx4BfDZmvYvA/8BvBK4BbgwIp5S3rufYqb8YODtwOuAxwDfLUtRJjwVeHp5j5MjIoCvA4eW8fwt8BLgNZO8vQ8C7wHeDayNiKOBVcA1ZaynAccCZ9U8ZzWwK/Aq4NXAPsAFETFne/oj4kjgXOBy4OXAF4GPR8TwJPFJUsvt2uoAJKmL/A/gMuCPgQSirv8fKZLiF2fm/QARsRZYD7yJIjmF4nfz0Zl5a3nNIWX75zLzpLLtW8CvgHcBbwReT1HL/ZTM/Fl5zaXADRTJ9gdq7v2/M3NNec0LgWcDz8vM75Rt3y/vXe/szPxqec0uwIeAr2TmW8v+iyPiTuCMiDgFuBl4IvCBzBwpn3cj8NfA3IjYbYb+u4CTgX+tqWW/OCIS+MeI+Exm3jNJnJLUMs5cS1J1DgfGgBcAjwbOqOt/DvAfE4k1QGb+BLgWeG7NdbdMJNZ1vlLzvPuBi4C/KJueB/wCuC4ido2IXYHfA1eU8dT6ac33hwB3TiTW5b03AldN8vo/qfn+ScC+wNfqrvly+fgc4DaKmvPPRcS/RMQrgesz8/hyRn+m/gOBeRQz2bvWvK8LgUcCz5gkRklqKZNrSarOzygWL36booTiiIh4fU3/nsBvJ3nebyl2Dpnwuynuf3Pdz7cAe5Xf700xC7y57usvKWbSJ9xTN9u7T3mfyWKqVxvXnpNdV9aX3ws8KjO3UpSbfBVYCpwH/C4iToqImKm/fE9QlIXUvqdryvba9yVJbcGyEEmqzqWZOZGorqBIGE+LiO9m5vXA7cAfTfK8x7DtbPJU9mbbZPbRPJjw3gn8J0XNdL37prnnRooZ6HqTtdW6vXzc5v1ExABFvfhtAJl5E3BURLwZeFYZ3/soZsG/OkP/f5W3/TvgB5PE8N8zxChJTefMtSTNgnLf6iMpEs1zyhrlK4HDy1pj4IGdRRYC39uO276s5nm7Ay+mWMRIee/9Kcoq1pQ11WuBv6993iS+C+wREc+pufe+wJ/PEMsG4FbgiLr2V5WP3yt3Rrk5Iv4sM7dm5lXAm4E/APNn6qf4S8BtwP+YeE/l+9qb4i8De8wQoyQ1nTPXkjRLMvPHEXES8E/AceXjVRS7fHycIjn8EHA9xS4YM3lfRGymSGzfCcwFTin7/g/wDuCSiFhBMbN8NMWuIH85TYzfjogrgHMj4jjgLuC9FB8Ktk7zvC3lezstIm6n2MVkEXAS8LXyve8KbALOjogTy5iOLO97AUW99ZT9mfmHsv1jRZUIl1J8gFhBUV/uzLWktuPMtSTNro9Q1AifWP78fKCPYiHgJykWHB6UmXdtx72OpSibOI9iO7/nZOZ/wwO1zs+hmO09gyLZfRxweGZ+c4b7/hXFzPnpFEn6xeXPd0/3pMz8NHAUxWLKrwNvAz4K/E3Z/weKbf1+Ud77Aoq68Jdl5k9m6q95jWMotuH7JsWuJ18DXpqegiapDXlCoyS1uXIrvm8DT5/YQq/Ce+9Pse/1qokj2Ms9pq+nmIH+hypfT5K6nWUhktTbAjgHeGFEfJliRvxvKRY0fq6VgUlSJ7IsRJJ6WGb+imJ/7idTnJb4bxTb7B2Smduzg4kkqYZlIZIkSVJFnLmWJEmSKmJyLUmSJFXE5FqSJEmqiMm1JEmSVBGTa0mSJKkiJteSJElSRf4fT32l2MnxDooAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(height_sample, weight_sample, marker=\"o\")\n",
"plt.xlabel(\"Körpergrösse\")\n",
"plt.ylabel(\"Gewicht\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "ab6609a5-9d85-4ce5-9ff7-030083b858ae",
"metadata": {},
"source": [
"Das Streudiagramm zeigt, dass eine lineare Beziehung zwischen den beiden betrachteten Variablen besteht. Für diese Übung berechnen wir den linearen Korrelationskoeffizienten zunächst von Hand und wenden dann die `np.corrcoef()`-Funktion in Python an. Wir erinnern uns an die Gleichung von oben"
]
},
{
"cell_type": "markdown",
"id": "7c77427f-fe7c-4f56-8dd8-2d066a2b44af",
"metadata": {},
"source": [
"$$ r = \\frac{\\sum_{i=1}^n (x_i - \\bar{x})(y_i - \\bar{y})}{\\sqrt{\\sum_{i=1}^n (x_i - \\bar{x})^2} \\sqrt{ \\sum_{i=1}^n (y_i - \\bar{y})^2}} = \\frac{s_{xy}}{s_x s_y}$$"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0ab30262-098e-4427-9b05-67a60bcf9164",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.9295600715108283"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s_xy = sum(\n",
" (height_sample - height_sample.mean()) * (weight_sample - weight_sample.mean())\n",
")\n",
"sx_sy = np.sqrt(sum((height_sample - height_sample.mean()) ** 2)) * np.sqrt(\n",
" sum((weight_sample - weight_sample.mean()) ** 2)\n",
")\n",
"\n",
"s_xy / sx_sy"
]
},
{
"cell_type": "markdown",
"id": "ee26573a-912d-420c-8da6-eb7ba2118072",
"metadata": {},
"source": [
"Zur Überprüfung des Ergebnisses berechnen wir das Verhältnis der Kovarianz von $x$ und $y$ und die Standardabweichung von $x$ und $y$."
]
},
{
"cell_type": "markdown",
"id": "4e26fbc4-b27f-44e6-bada-5414d1380878",
"metadata": {},
"source": [
"$$ r = \\frac{s_{xy}}{s_x s_y} $$"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "18d7258e-7a61-4cf8-b97c-49507ca2e0a8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.9295600715108282"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Berechne Kovarianz zwischen height_sample und weight_sample\n",
"s_xy = np.cov(height_sample, weight_sample)[0, 1]\n",
"\n",
"# Berechne Standardabweichung für height_sample und weight_sample\n",
"std_height_sample = np.std(height_sample, ddof=1)\n",
"std_weight_sample = np.std(weight_sample, ddof=1)\n",
"\n",
"# Berechne Pearsonkorrelationskoeffizienten\n",
"s_xy / (std_height_sample * std_weight_sample)"
]
},
{
"cell_type": "markdown",
"id": "ed9b4732-b599-42d2-817d-86340682e205",
"metadata": {},
"source": [
"Zum Schluss wenden wir die Funktion `np.corrcoef` an, die im `numpy` Modul enthalten ist."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "fab6655c-d521-442a-9b1b-bce8a6eaa38d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.9295600715108282"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.corrcoef(weight_sample, height_sample)[0, 1]"
]
},
{
"cell_type": "markdown",
"id": "8d8ae797-4098-408f-83e1-720fc6be393f",
"metadata": {},
"source": [
"Perfekt! Die vier Berechnungen ergeben genau das gleiche Ergebnis! Der lineare Korrelationskoeffizient beträgt $r=0,9296$. Daraus können wir schließen, dass es einen starken linearen Zusammenhang zwischen der Größe und dem Gewicht eines Studenten gibt."
]
},
{
"cell_type": "markdown",
"id": "49b5efcb-13c1-4295-afaf-57a67c623c6b",
"metadata": {},
"source": [
"Natürlich ist eine Korrelationsanalyse nicht auf zwei Variablen beschränkt. Dank statistischer Softwarepakete, wie Python, können wir eine paarweise Korrelationsanalyse für mehr als zwei Variablen durchführen. Lassen Sie uns zunächst den Datensatz vorbereiten. Für eine bessere Visualisierung ziehen wir $100$ zufällig ausgewählte Studenten aus dem `students` Datensatz. Dann wählen wir eine numerische Variablen aus, um eine Korrelationsanalyse durchzuführen."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "48de323d-6109-40eb-93ee-087a35aca8f4",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
age
\n",
"
height
\n",
"
weight
\n",
"
nc_score
\n",
"
score1
\n",
"
score2
\n",
"
online_tutorial
\n",
"
graduated
\n",
"
salary
\n",
"
\n",
"
\n",
"
stud_id
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
214140
\n",
"
19
\n",
"
178
\n",
"
79.3
\n",
"
1.66
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
NaN
\n",
"
\n",
"
\n",
"
523713
\n",
"
21
\n",
"
194
\n",
"
91.5
\n",
"
1.62
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
NaN
\n",
"
\n",
"
\n",
"
870225
\n",
"
21
\n",
"
162
\n",
"
63.5
\n",
"
3.32
\n",
"
70.0
\n",
"
82.0
\n",
"
1
\n",
"
0
\n",
"
NaN
\n",
"
\n",
"
\n",
"
519478
\n",
"
20
\n",
"
168
\n",
"
69.6
\n",
"
2.12
\n",
"
71.0
\n",
"
72.0
\n",
"
1
\n",
"
1
\n",
"
34979.14
\n",
"
\n",
"
\n",
"
643038
\n",
"
24
\n",
"
184
\n",
"
85.1
\n",
"
3.42
\n",
"
71.0
\n",
"
77.0
\n",
"
1
\n",
"
1
\n",
"
41028.24
\n",
"
\n",
"
\n",
"
681278
\n",
"
21
\n",
"
158
\n",
"
60.8
\n",
"
1.03
\n",
"
55.0
\n",
"
52.0
\n",
"
1
\n",
"
0
\n",
"
NaN
\n",
"
\n",
"
\n",
"
515357
\n",
"
43
\n",
"
161
\n",
"
68.1
\n",
"
3.38
\n",
"
77.0
\n",
"
86.0
\n",
"
1
\n",
"
0
\n",
"
NaN
\n",
"
\n",
"
\n",
"
648227
\n",
"
24
\n",
"
187
\n",
"
91.0
\n",
"
1.94
\n",
"
51.0
\n",
"
50.0
\n",
"
0
\n",
"
1
\n",
"
41601.20
\n",
"
\n",
"
\n",
"
127799
\n",
"
20
\n",
"
174
\n",
"
77.2
\n",
"
1.40
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
NaN
\n",
"
\n",
"
\n",
"
729441
\n",
"
34
\n",
"
167
\n",
"
70.4
\n",
"
1.13
\n",
"
60.0
\n",
"
57.0
\n",
"
1
\n",
"
1
\n",
"
33208.01
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age height weight nc_score score1 score2 online_tutorial \\\n",
"stud_id \n",
"214140 19 178 79.3 1.66 NaN NaN 0 \n",
"523713 21 194 91.5 1.62 NaN NaN 0 \n",
"870225 21 162 63.5 3.32 70.0 82.0 1 \n",
"519478 20 168 69.6 2.12 71.0 72.0 1 \n",
"643038 24 184 85.1 3.42 71.0 77.0 1 \n",
"681278 21 158 60.8 1.03 55.0 52.0 1 \n",
"515357 43 161 68.1 3.38 77.0 86.0 1 \n",
"648227 24 187 91.0 1.94 51.0 50.0 0 \n",
"127799 20 174 77.2 1.40 NaN NaN 0 \n",
"729441 34 167 70.4 1.13 60.0 57.0 1 \n",
"\n",
" graduated salary \n",
"stud_id \n",
"214140 0 NaN \n",
"523713 0 NaN \n",
"870225 0 NaN \n",
"519478 1 34979.14 \n",
"643038 1 41028.24 \n",
"681278 0 NaN \n",
"515357 0 NaN \n",
"648227 1 41601.20 \n",
"127799 0 NaN \n",
"729441 1 33208.01 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Wähle zufällige Stichprobe n=100 aus ohne Zurücklegen auszuwählen\n",
"students_sample = students.sample(100, replace=False, random_state=42)\n",
"# Wähle nur numerische Variablen aus\n",
"students_sample = students_sample.select_dtypes(\"number\")\n",
"\n",
"students_sample.sample(10)"
]
},
{
"cell_type": "markdown",
"id": "006110e9-bb08-4465-a7fc-f17340a65e49",
"metadata": {},
"source": [
"Offensichtlich enthalten einige Variablen fehlende Werte, die als $NaN$ bezeichnet werden. Wir können diese Werte aus der Analyse ausschließen, indem wir die Methode `dropna()` hinzufügen."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "bb50a824-329c-4358-bf47-cdf94f90bc8e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" age height weight nc_score score1 score2 \\\n",
"age 1.000000 -0.021219 0.046222 -0.277334 0.132991 0.073143 \n",
"height -0.021219 1.000000 0.955495 -0.031163 -0.041360 -0.181769 \n",
"weight 0.046222 0.955495 1.000000 0.073386 -0.078268 -0.176928 \n",
"nc_score -0.277334 -0.031163 0.073386 1.000000 -0.185161 -0.037330 \n",
"score1 0.132991 -0.041360 -0.078268 -0.185161 1.000000 0.860207 \n",
"score2 0.073143 -0.181769 -0.176928 -0.037330 0.860207 1.000000 \n",
"online_tutorial 0.037136 -0.155009 -0.165820 -0.048404 0.131912 0.381767 \n",
"graduated NaN NaN NaN NaN NaN NaN \n",
"salary -0.146958 0.467934 0.473708 0.037957 0.165573 -0.038099 \n",
"\n",
" online_tutorial graduated salary \n",
"age 0.037136 NaN -0.146958 \n",
"height -0.155009 NaN 0.467934 \n",
"weight -0.165820 NaN 0.473708 \n",
"nc_score -0.048404 NaN 0.037957 \n",
"score1 0.131912 NaN 0.165573 \n",
"score2 0.381767 NaN -0.038099 \n",
"online_tutorial 1.000000 NaN -0.325214 \n",
"graduated NaN NaN NaN \n",
"salary -0.325214 NaN 1.000000 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"students_sample_clean.corr()"
]
},
{
"cell_type": "markdown",
"id": "233abf81-4434-4828-80a3-3588b2505b77",
"metadata": {},
"source": [
"Eine Tabelle ist eine schöne Darstellung für eine Korrelationsanalyse, aber eine Abbildung würde natürlich die Interpretierbarkeit verbessern. Das Modul [seaborn](https://seaborn.pydata.org/) bietet die Funktion `pairplot` zur Darstellung von Korrelationsmatrizen."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0a135ba4-ec5c-4076-b2a5-9ff986fc6fcf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABi0AAAY3CAYAAAATMjweAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdf3xcV33n//cZW/bY+hVbkSXFiaIIDGHlOCbrbdMs6Q+nUJelxE2LQ9stlG/a0N0WZ9cNC4WQQkhpA9Q0AVpIfy50WWKgTQJL3dCE8qOBFlOMEzcJDkZxEtuyoxhJkTOW7Hu+f4xmIskz0vy4P8659/V8POaRWCPNnHvP+3POHR3de421VgAAAAAAAAAAAEnLJd0AAAAAAAAAAAAAiUULAAAAAAAAAADgCBYtAAAAAAAAAACAE1i0AAAAAAAAAAAATmDRAgAAAAAAAAAAOIFFiwZt2bLFSuLBo5ZHIsgojzofiSCnPOp4JIac8qjjkQgyyqPORyLIKY86HokhpzzqeCSGnPKo45EIMsqjzkdFLFo06Jlnnkm6CcCCyCh8QE7hA3IK15FR+ICcwgfkFD4gp3AdGUUYWLQAAAAAAAAAAABOYNECAAAAAAAAAAA4gUULAAAAAAAAAADghKVJNwAAwhAEVsOjkxoZL6inI6+BrlblcibpZiHlyF020e+A26hRJIHcAelCTfuBfkKjyI77WLQA4L0gsNq9/6h27NqrwnSgfEtOO7dt1JahXiYdRIbcZRP9DriNGkUSyB2QLtS0H+gnNIrs+IHLQwHw3vDoZHmykaTCdKAdu/ZqeHQy4ZYhzchdNtHvgNuoUSSB3AHpQk37gX5Co8iOH1i0AOC9kfFCebIpKUwHOjZRSKhFyAJyl030O+A2ahRJIHdAulDTfqCf0Ciy4wcWLQB4r6cjr3zL3OEs35LTmvZ8Qi1CFpC7bKLfAbdRo0gCuQPShZr2A/2ERpEdP7BoAcB7A12t2rltY3nSKV2PcKCrNeGWIc3IXTbR74DbqFEkgdwB6UJN+4F+QqPIjh+4ETcA7+VyRluGenXx9it1bKKgNe15DXS1cgMlRIrcZRP9DriNGkUSyB2QLtS0H+gnNIrs+IFFCwCpkMsZDXa3abC7LemmIEPIXTbR74DbqFEkgdwB6UJN+4F+QqPIjvu4PBQAAAAAAAAAAHACixYAAAAAAAAAAMAJLFoAAAAAAAAAAAAnsGgBAAAAAAAAAACcwKIFAAAAAAAAAABwAosWAAAAAAAAAADACSxaAAAAAAAAAAAAJ7BoAQAAAAAAAAAAnMCiBQAAAAAAAAAAcAKLFgAAAAAAAAAAwAksWgAAAAAAAAAAACewaAEAAAAAAAAAAJzAogUAAAAAAAAAAHACixYAAAAAAAAAAMAJLFoAAAAAAAAAAAAnsGgBAAAAAAAAAACcwKIFAAAAAAAAAABwAosWAAAAAAAAAADACSxaAAAAAAAAAAAAJ7BoAQAAAAAAAAAAnMCiBQAAAAAAAAAAcAKLFgAAAAAAAAAAwAksWgAAAAAAAAAAACewaAEAAAAAAAAAAJzAogUAAAAAAAAAAHACixYAAAAAAAAAAMAJqV20MMYsM8bcaox5whgzaYx5wBhz2aznjTHmncaYQ8aYk8aYLxljLk6yzQAAAAAAAAAAZFlqFy0kfUjSdkl/KOnnJZ2U9GVjzIUzz98s6SZJH5T0ekmdku43xnQm0FYAAAAAAAAAADIvlYsWMwsPvyHp3dbaP7XW3ifpdZJaJP2qMaZd0o0zz99hrb1X0s9Iapd0XVLtBgAAAAAAAAAgy1K5aCFpUtKPSvqrWV+blmQlLZd0uaQ2SfeWnrTWnpD0FUlb4msmAAAAAAAAAAAoSeWihbX2tLX2O9baE8aYnDHmIkl/qeKixd9IesnMt35/3o8enPUcAAAAAAAAAACIUSoXLeZ5l4qLEb8q6TZr7WOSOiSdstZOzfveiZnnKjLGXG+M2WOM2XP8+PHIGgw0iozCB+QUPiCncB0ZhQ/IKXxATuEDcgrXkVGELQuLFn8n6SclvUfSzcaY90oyKp51MZ+RFFR7IWvtndbaTdbaTd3d3VG0FWgKGYUPyCl8QE7hOjIKH5BT+ICcwgfkFK4jowjb0qQbEDVr7b6Z//3KzA243yrpbZKWG2NarLXTs769TdJY3G0EAAAAAAAAAAApPdPCGNNrjHnTzCLFbN9R8UbcJ1Q8q+Kiec8PSnoshiYCAAAAAAAAAIB5UrloIekcFW+8/Yvzvv4qScck3S2pIGlr6QljzCpJPyHp/jgaCAAAAAAAAAAA5krl5aGstY8aYz4n6Y+MMctUvBH3NSrejPv/s9aOG2M+LOlWY0wg6XuS3ilpXNKfJ9VuAAAAAAAAAACyLJWLFjPeIOn3JP2upD5J/y7pddbaz848/w4Vb7p9o4r3snhQ0huttdzTAgAAAAAAAACABKR20cJae1LFG26/rcrzpyW9feYBAAAAAAAAAAASltZ7WgAAAAAAAAAAAM+waAEAAAAAAAAAAJzAogUAAAAAAAAAAHACixYAAAAAAAAAAMAJLFoAAAAAAAAAAAAnsGgBAAAAAAAAAACcwKIFAAAAAAAAAABwAosWAAAAAAAAAADACSxaAAAAAAAAAAAAJ7BoAQAAAAAAAAAAnMCiBQAAAAAAAAAAcAKLFgAAAAAAAAAAwAksWgAAAAAAAAAAACewaAEAAAAAAAAAAJzAogUAAAAAAAAAAHACixYAAAAAAAAAAMAJLFoAAAAAAAAAAAAnsGgBAAAAAAAAAACcsDTpBizEGHOhpD5JD0ky1trnEm4SAAAAAAAAAACIiJNnWhhjfsEYc0DSDyR9XdJLJf0fY8zfGGNakm0dAAAAAAAAAACIgnOLFsaYbZJ2SfqKpG16oY1/J+nnJd2cUNMAAAAAAAAAAECEXLw81M2SbrfW7jDGLCl90Vr718aYVZLeIuldibUOAAAAAAAAAABEwrkzLSS9WNIXqzz3HRXvcQEAAAAAAAAAAFLGxUWLQ5JeUeW5H5H0ZIxtAQAAAAAAAAAAMXHx8lAfkfRBY4xR8YwLK2mtMeYySe+U9N4kGwcAAAAAAAAAAKLh3KKFtfaOmXtXvE3STZKMpHskTUu6w1r7wSTbBwAAAAAAAAAAouHcooUkWWvfY4z5Y0k/Jmm1pDFJ/2KtfSbRhgEAAAAAAAAAgMg4uWghSdbaMUm7k24HAAAAAAAAAACIh3OLFsaYH6h4H4tKAknPSXpc0kestf8UV7sAAAAAAAAAAEC0ckk3oIJPSeqTtFLSlyV9WtL9klokXSjpkZnn/9EYsyWpRgIAAAAAAAAAgHA5d6aFpDWSviHpv1hrny990RizTMUbcv/QWvtLxpiPSXqXuIQUAAAAAAAAAACp4OKZFq+T9MHZCxaSZK2dknSHpF+a+dJnJG2IuW0AAAAAAAAAACAiLi5anJLUX+W5CyWdnvn/JZKmYmkRAAAAAAAAAACInIuLFndJ+kNjzK8aYzokyRjTYYz5r5L+QNIuY0yrpN+UtKfaixhjlhhjdhhjHjHGTBpj/t0Y89vGGDPz/CZjjK3w+GAM2wgAAAAAAAAAAOZx8Z4Wb5V0rqT/LckaY6ZVvAm3lfR/JN0o6WpJPyXplQu8zrskvV3SeyV9U9KVkv5YxRt8v1/FS0tNSvrpeT93OKTtAAAAAAAAAAAAdXBu0cJae0rSLxtjfk/ST6i4gHFY0tettQeNMb2S7pO01lp7stJrGGNyknZI+oC19vdnvny/MaZbxUWP0qLFw9bab0a7RQAAAAAAAAAAoBbOLVrMXBLqXSouWCyXZGaeeqsxZqWkfmttyyIv0ynpE5L+dt7XH5PUPXN5qQ2S9oXWcAAAAAAAAAAA0BQX72lxh6QbVDy7YoWkM5IekbRaxRtx/9ZiL2CtPWGt/W1r7XfmPfVzkp6y1k5KukTSBcaYvcaYKWPM48aYN4a5IQAAAAAAAAAAoHYuLlq8WtI7rbVbJf2ppMPW2mslvUTSt1U8Q6JuxphfV/H+Fe83xpyn4mWn1kn6/Zn3/IqkvzbGvGGB17jeGLPHGLPn+PHjjTQDiBQZhQ/IKXxATuE6MgofkFP4gJzCB+QUriOjCJuLixadkv5l5v8flrRJkmbOjvgjFRcY6mKM+RVJH5P0WUkfkfRDSVskXWmt/Yy19h+ttddJ2i3p96q9jrX2TmvtJmvtpu7u7nqbAUSOjMIH5BQ+IKdwHRmFD8gpfEBO4QNyCteRUYTNxUWLI5J6Z/7/e5LONcb0zfz7+KznamKM+Z+SPinpC5J+xRadtNb+g7X2yLxv3y1p0BjT1njzAQAAAAAAAABAI1xctLhH0h8aY15prX1C0g8k3WyMGZD03yQ9UesLGWPeJ2mniosWv2itnZr5+kuMMb9pjFk+70dWSHpe0mTzmwEAAAAAAAAAAOrh4qLFTZL+XdLvzPx7h6Q3Sfq+pJ+X9J5aXsQYc4Ok35V0u6Rfs9aenvX0WhXvl/HqWd9vJF0j6WvWWtvkNgAAAAAAAAAAgDotTboB81lrJyS9pnQWhLX2XmPMekmXSfqOtfbAYq8xczmp2yQ9JOnTkn60uCZR9qCkr0v6mDFmlYqXpHqzijf5fkWImwMAAAAAAAAAAGrk3KJFibX21Kz/f1zS43X8+M9IWi7pEknfqPB8t6SrJb1P0i2SuiT9m6RXWmv3NNpmAKgmCKyGRyc1Ml5QT0deA12tyuXMos9F/d5IvzD6P44MkdNo+bR/XW6ry21LUtr2S9zbk7b95zr2d3T7II37No3bhNqcPh1o/5ExHRkrqK9zhYb6OrR0qYsXK8m2qakz2nd4TEfHC+rryOuS8zq1bNmSpJuFjCvNHaOTp7RsSU5TZwItW5LTyakzzCV1cHbRohnW2r+W9Nc1fOtvRtsSAChOWLv3H9WOXXtVmA6Ub8lp57aN2jLUK0lVnwvrw2OUrw+3hdH/cWSInEbLp/3rcltdbluS0rZf4t6etO0/17G/o9sHady3adwm1Ob06UB3f/dp3XT3w+W+v3Xrem29dC0LFw6Zmjqju/cd1s33vNBPt1y9Xls3nMfCBRJTmjtu2/2Irt3Ur7v2HNK1m/p1xwMHmEvqxGgLABEbHp0sf9iRpMJ0oB279mp4dHLB56J+b6RfGP0fR4bIabR82r8ut9XltiUpbfsl7u1J2/5zHfs7un2Qxn2bxm1CbfYfGSsvWEjFvr/p7oe1/8hYwi3DbPsOj5UXLKRiP918z8Pad5h+QnJKc8drNqzVHQ8cKP+XuaR+LFoAQMRGxgvlCaqkMB3o2ERhweeifm+kXxj9H0eGyGm0fNq/LrfV5bYlKW37Je7tSdv+cx37O7p9kMZ9m8ZtQm2OjFXu+6Nj9L1Ljlap0ZFx+gnJKc0dxmjOf2djLqkNixYAELGejrzyLXOH23xLTmva8ws+F/V7I/3C6P84MkROo+XT/nW5rS63LUlp2y9xb0/a9p/r2N/R7YM07ts0bhNq09e5omLf93bS9y7pq1KjPR30E5Ize+6Y/98S5pLasGgBABEb6GrVzm0b50xYO7dt1EBX64LPRf3eSL8w+j+ODJHTaPm0f11uq8ttS1La9kvc25O2/ec69nd0+yCN+zaN24TaDPV16Nat6+f0/a1b12uorzPhlmG2S87r1C1Xz+2nW65erw3n0U9ITmnu+Px3n9b2zevK/2UuqZ+x1ibdBi9t2rTJ7tmzJ+lmwA+J3FmHjLolCKyGRyd1bKKgNe15DXS1lm+6tNBzUb/3LOQ0pcLIV9QZrfE9ErtLWRpyGkcfhsXltrqa06Qz6nKfNSLu7Ulg/2UypyVpy2sjotoHIb6uM3M+ecmu06cD7T8ypqNjBfV25jXU1zn/JtzO5DTLpqbOaN/hMY2MF9TTkdeG8zq5CfdcmZ7zk1KaO56dPKWWJTlNnQm0bElOJ6fOqKeDuaSCijtjadytAIAsyuWMBrvbNNjdVtdzUb830i+M/o8jQ+Q0Wj7tX5fb6nLbkpS2/RL39qRt/7mO/R3dPkjjvk3jNqE2S5fmdOkFq3TpBUm3BAtZtmyJNg2sTroZwBzMHeHg8lCOWXtBv4wxDT/WXtCf9CYAAAAAAAAAANAQzrRwzOGnntS1H3+w4Z+/681XhNgaZFHpNLbS6ZVJn7YWVXtKp/seGSuor3OFhvo65p/uC4/Vm5t6vj/sTLpWc2hO0v05//37V63UoRMnY29P0vsBaMZi+Y1yjom67Ui32ce3569aofzSJTr+3KnYspDG/JUuPXN0vKC+jrwu4dIzmZHGPKdRoXBaDx0Z09HxU+rtWK5L+jqVz/OrzqxI6nN8kuNDlsYmKhlAWRBY7d5/VDt27VVhOijfIGjLUG8ig2BU7Tl9OtDd331aN939cPl1b926XlsvXcvCRQrUm5t6vj/sTLpWc2hO0v1Z6f1v3bpeH37ggJ4YfT629iS9H4BmLJbfKOeYqNuOdJt9fLtq5TK94ccu1O33H4gtC2nM39TUGd2977BuvueFzwy3XL1eWzecx8JFyqUxz2lUKJzWvQ8d0c33zqrR167Xay/pY+EiA5L6HJ/k+JC1sYnfzgEoGx6dLA9+klSYDrRj114Nj06mqj37j4yVFyxKr3vT3Q9r/5GxptuM5NWbm3q+P+xMulZzaE7S/Vnp/W+6+2G9ZsPaWNuT9H4AmrFYfqOcY6JuO9Jt9vHtNZedX16wkOLJQhrzt+/wWHnBQipu0833PKx9h/nMkHZpzHMaPXRkrLxgIc3U6L0P6yE+12dCUp/jkxwfsjY2sWgBoGxkvFAe/EoK04GOTRRS1Z4jY5Vf9+hYMtuJcNWbm3q+P+xMulZzaE7S/Vnt/Y2Z+++o25P0fgCasVh+o5xjmkXtZdvs41tjFHsW0pi/o1W2aWTc321CbdKY5zQ6On6qSo2eSqhFiFNSn+OTHB+yNjaxaAGgrKcjr3zL3GEh35LTmvZ8qtrT17mi4uv2diaznQhXvbmp5/vDzqRrNYfmJN2f1d7f2njbk/R+AJqxWH6jnGOaRe1l2/zj27izkMb89VXZpp4Of7cJtUljntOot2N5lRpdnlCLEKekPscnOT5kbWxi0QJA2UBXq3Zu21geBEvXxxvoak1Ve4b6OnTr1vVzXvfWres11NfZdJuRvHpzU8/3h51J12oOzUm6Pyu9/61b1+sL+56OtT1J7wegGYvlN8o5Juq2I91mH99+7ttP6Yar1sWahTTm75LzOnXL1XM/M9xy9XptOI/PDGmXxjyn0SV9nbrltfNq9LXrdQmf6zMhqc/xSY4PWRubjJ3953eo2aZNm+yePXtCf11jjK79+IMN//xdb75C9KlzErkbTqMZDQKr4dFJHZsoaE17XgNdrYne0Ceq9pw+HWj/kTEdHSuotzOvob7OrN+E26ucLqbe3NTz/WFn0rWac1hiO6WenCbdn/Pfv3/VSh06cTL29iS9HxKUqrE0qxbLb5RzTNRtn0FOU2r28e3aVSuUX7pEz0yeim0cDjHrzsz5U1NntO/wmEbGC+rpyGvDeZ3chDsjasizMznNskLhtB46MqaR8VPq6ViuS/o6uQn3XKme85P6HJ/kZ52Ufs6quAEsWjSIRQvUIdWTBFKDnMJ1fDCEDxhL4QNyCtcx58MH5BQ+YM6HDyrmNNN/VgwAAAAAAAAAANzBOVMAYlU6la10inVYp7JF9bouytK2hinM/eZrH/jabh/Us2+DwOrQs5MaGT+lyanTunB1qy46l75AshgfwjN/X5Yu08a+jRYZbkwS+42+gg9KlwY7Ol5QX0del3BpMCfRTyhpZG6p5WeYs5LDogWA2ASB1e79R7Vj114VpoPyTYO2DPU2fU+AKF7XRVna1jCFud987QNf2+2DevZtEFg98NiIDow8p9vvP0BfwAmMD+GZvy8v7Fqht2xep5vufph9GyEy3Jgk9ht9BR9MTZ3R3fsO6+Z7Xhi7b7l6vbZuOI9fiDuEfkJJI3NLLT/DnJUsLg8FIDbDo5PlwV6SCtOBduzaq+HRSSdf10VZ2tYwhbnffO0DX9vtg3r27fDopPY9NVZesFjs+4E4MD6EZ/6+fM2GteUFC4l9GxUy3Jgk9ht9BR/sOzxW/kW4VMzpzfc8rH2HxxJuGWajn1DSyNxSy88wZyWLRYu0yS2VMaahx9oL+pNuPVJuZLxQHuxLCtOBjk0UnHxdF2VpW8MU5n7ztQ98bbcP6tm3I+MFBVb0BZzC+BCe+fvSGOo9DmS4MUnsN/oKPjhaJacj4+TUJfQTShqZW2r5GeasZHF5qLQJTuvajz/Y0I/e9eYrQm4MMFdPR175ltycQT/fktOa9ryTr+uiLG1rmMLcb772ga/t9kE9+7anI68lRvQFnML4EJ5q+5J9Gy0y3Jgk9ht9BR/0VclpTwc5dQn9hJJG5pZafoY5K1mcaQEgNgNdrdq5baPyLcWhp3Q9wIGuVidf10VZ2tYwhbnffO0DX9vtg3r27UBXqy45v1M3XLWOvoAzGB/CM39ffv67T+vWrevZtxEjw41JYr/RV/DBJed16par547dt1y9XhvO60y4ZZiNfkJJI3NLLT/DnJUsY61Nug1e2rRpk92zZ0/or2uMafhMCal4tkQzZ1qQh0gkcneeqDLarCCwGh6d1LGJgta05zXQ1RrKDYyiel0XRbStqc9pmPvN17z52u4ZiTW0lpzWs2+DwOrQs5MaGT+lk1On1b+6VRed61VfoDpvx1LPxwenzN+X/atW6tCJky7tW29zuhAy3Jgk9lsN7+n0nI9smJo6o32HxzQyXlBPR14bzuucf3NncuqAGvop61I551fSyHxWy89wfBGLijuUy0MBiFUuZzTY3abB7jYvXtdFWdrWMIW533ztA1/b7YN69m0uZzRwbpsGzqUf4A7Gh/BU2pfs2+iR4cYksd/oK/hg2bIl2jSwOulmYBH0E0oamVtq+RnmrORweSgAAAAAAAAAAOAEFi0AAAAAAAAAAIATuDwUkCGla/GVrvfItfiSVak/JGW6j8hoc2rdf+znbGCMCV+Wa8enbW+2rT5ta9a51FdxtcWlbc4C9nd2nT4daP+RMR0ZK6ivc4WG+jq0dCl/9+ua0j0tjo4X1NeR1yXc0wJ1Ypw/W5j7pJnXYtECyIggsNq9/6h27NqrwnSgfEtOO7dt1Jah3swPyEmo1B8f+eWXa+q0zWwfkdHm1Lr/2M/ZwBgTvizXjk/b3mxbfdrWrHOpr+Jqi0vbnAXs7+w6fTrQ3d99Wjfd/XC572/dul5bL13LwoVDpqbO6O59h3XzPS/00y1Xr9fWDeexcIGaMM6fLcx90uxrMdoCGTE8OlkeKCSpMB1ox669Gh6dTLhl2VSpP/Y9NZbpPiKjzal1/7Gfs4ExJnxZrh2ftr3Ztvq0rVnnUl/F1RaXtjkL2N/Ztf/IWHnBQir2/U13P6z9R8YSbhlm23d4rLxgIRX76eZ7Hta+w/QTasM4f7Yw90mzr8WiBZARI+OF8kBRUpgOdGyikFCLsq1SfwRWme4jMtqcWvcf+zkbGGPCl+Xa8Wnbm22rT9uadS71VVxtcWmbs4D9nV1Hxir3/dEx+t4lR6vU6Mg4/YTaMM6fLcx90uxrsWgBZERPR175lrkln2/JaU17PqEWZVul/lhilOk+IqPNqXX/sZ+zgTEmfFmuHZ+2vdm2+rStWedSX8XVFpe2OQvY39nV17miYt/3dtL3LumrUqM9HfQTasM4f7Yw90mzr8WiBZARA12t2rltY3nAKF1LrnRjVsSrUn9ccn5npvuIjDan1v3Hfs4GxpjwZbl2fNr2Ztvq07ZmnUt9FVdbXNrmLGB/Z9dQX4du3bp+Tt/funW9hvo6E24ZZrvkvE7dcvXcfrrl6vXacB79hNowzp8tzH3S7GsZa23dbwpp06ZNds+ePaG/rjFG1378wYZ//q43X9Hwz9/15itEHiKRyN17KmU0CKyGRyd1bKKgNe15DXS1ZvbmQi6o1B+SkuojJ3JKRptT6/7zdD8n1sCo5vyoOTbGpEINtePEWBoFn8aNZtvq07Y2KDU5damv4mqLS9scIWfm/Izsb1Rw+nSg/UfGdHSsoN7OvIb6OuffhNuZnGbZ1NQZ7Ts8ppHxgno68tpwXic34Z4rNXN+VBjnzxbmPqnxtSq++NKG3tEDxpglkm6Q9BuS+iU9IelPJH3UWmuNMUbSOyS9WdK5kv5Z0lustY8m1GQgcrmc0WB3mwa725JuClS9P7LcR2S0ObXuP/ZzNjDGhC/LtePTtjfbVp+2Netc6qu42uLSNmcB+zu7li7N6dILVunSC5JuCRaybNkSbRpYnXQz4DHG+bOFuU+aea00Xx7qXZLeJ+lvJL1W0i5JfyzprTPP3yzpJkkflPR6SZ2S7jfGcB4ZAAAAAAAAAAAJSOWZFsaYnKQdkj5grf39mS/fb4zplnSjMeZPJd0o6d3W2jtmfuZrKp6NcZ2knQk0G0AISqeelU4PXezyOKXv61+1UodOnKz4c/W+5ujkKS1bktPJqTMLfj/8NTsTa9rzWpKTjowtnI/5P3/o2UmNjJ/S5NRpXbi6VRedW/3ngsDqB89M6olnJ9W6bKl6OparfzW58kmt40iS71/K2eGxk1q+ZIkmp05roKtVgZWOTSTTbjQu6swlneko2xL3ttVzTIK5ouqrMF7XpRqZr1rbSpfDOTJWUF/nCg31dcy/HA6QGSefn9LDRyc0Mn5KPR3Ltb63XStXLEu6WZiHfvJHI/NiEnPpQu/pw/GBy8cf9UrlooWKZ018QtLfzvv6Y5K6JW2W1Cbp3tIT1toTxpivSNoiFi0ALwWB1e79R7Vj114VpoPyTX62DPXOGaTnf9+FXSv0ls3rdNPdD5/1c5Lqes3bdj+iazf1644HDiz4/fBXpZzdcNU6feIbT+jEyalF+zsIrB54bEQHRp7T7fcvnpNq77eup02bX9pDrjxQ69iU5PtXGsNWrVymN/zYhTXlFG6JOnNJZzrKtsS9bfUck1B3c0XVV2G8rks1Umvbfvqla3TvQ4fnZO/Wreu19dK1LFwgc04+P6UvPDyim+99oR5uee16vWZ9D78Qdwj95I9G5sUk5tKF3lOq7XdDjb5+2o7Rw5DKow9r7Qlr7W9ba78z76mfk/SUpPNn/v39ec8flPSSqNsHIBrDo5PlwVmSCtOBduzaq+HRyQW/7zUb1pY/oM3/uXpf8zUb1pYXLBb6fvirUiZuv/+Arrns/Jr6e3h0UvueGiv/Irj0GtV+rtr77XtqjFx5otZxJMn3rzSGXXPZ+TXnFG6JOnNJZzrKtsS9bfUck2CuqPoqjNd1qUbmq9a2fYfHzsreTXc/rP1HxpJsLpCIh49OlH8RLhXr4eZ7H9bDRycSbhlmo5/80ci8mMRcutB7+nB84PLxRyNSuWhRiTHm1yX9tKT3S+qQdMpaOzXv2yZmnqv2GtcbY/YYY/YcP3684vesvaBfxpiGH0Azaslomo2MF8qDc0lhOtCxicKC32eMqv5cva+50GuhyPecVstEaQhfrL9HxgsKbO05qfZ+pUv2IBph5rTWcSQqtbx/pTGM8cxtC2U06swlneko2xL3ttVzTOKjKOf8qPoqjNd1qUbmq9a2o9W+PpZ8m6Pm+7EpwjcyfqpiPYyMn0qoReS0Ehf7KcvCPjZNYi5d6D19OD5w+fijEWm9PNQcxphfkfQxSZ+V9BFJvyvJVvpWSUGFr0uSrLV3SrpTkjZt2lTp53X4qSd17ccfbLitd735ioZ/Fqglo2nW05FXviU3Z5DOt+S0pj1f0/dV+7l6XrPW788y33NaLT/WvvD/C/V3T0deS0ztOan2fjkjchWhMHNa69gUlVrev9oYxnjmroUyGnXmks50lG2Je9vqPSbxTZRzflR9FcbrulQj81VrW1+Vr/d2Jt/mqPl+bIrw9XQsr1gPPR3LE2sTOT2bi/2UZWEfmyYxly72nq4fH7h8/NGI1J9pYYz5n5I+KekLkn7FWmsljUlaboxpmfftbTPPAfDQQFerdm7bOOcXbzu3bdRAV+uC3/f57z6tW7eur/hz9b7m57/7tLZvXrfo98NflTJxw1Xr9Lf/9lRN/T3Q1apLzu/UDVfVlpNq77fh/E5y5Ylax5Ek37/SGPa5bz9Vc07hlqgzl3Smo2xL3NtWzzEJ5oqqr8J4XZdqZL5qbbvkvM6zsnfr1vUa6utMsrlAItb3tuuW186th1teu17re9sTbhlmo5/80ci8mMRcutB7+nB84PLxRyOMteldoDXGvE/Fsyo+Iek6a+3pma+/StI/SHqptfZ7s77/85KWWGtfvdhrb9q0ye7Zs6fSezZ9pkVSP3/Xm69QmvOQoESu+1Uto2kXBFbDo5M6NlHQmva8BrpaK95waP739a9aqUMnTlb8uXpf89nJU2pZktPJqTPq6aj+/Y4hp3WYnYnutryW5KSj4wvnY/7PH3p2UiPjp3Ry6rT6V7fqonOr/1wQWP3gmUkdenZSK5ctVU/HcvWv9iJXYUpsY8PIaa3jSFRqef9Szo6MndSyJUs0OXVaA12tCqx0/Llk2u0hZ8bSqDOXdKajbEvc21bPMUlInMlps6LqqzBe16Uama9a206fDrT/yJiOjhXU25nXUF9nUjfh9nrORzqcfH5KDx+d0Mj4KfV0LNf63vb5N3cmpw6ooZ+yzpk5v5F5MYm5dKH39OH4wOXjjwVUbGBqLw9ljLlBxQWL2yX9Tzv3t/EPSipI2qriPS5kjFkl6SckvSfelgIIUy5nNNjdpsHutrq/r9rPNfOaSKdKfT1wbu39nssZDZzbVvPP5HJGL1rTphetIVu+Snp8qOX9F8oZ2fNP1JlLOtNRtiXubavnmARzRdVXYbyuSzUyX7W2LV2a06UXrNKlFyTUMMAhK1cs049c1JV0M7AI+skfjcyLScylC72nD8cHLh9/1CuVixbGmD5Jt0l6SNKnJf3ovJtc75H0YUm3GmMCSd+T9E5J45L+PN7WAgAAAAAAAAAAKaWLFpJ+RtJySZdI+kaF57slvUPFm27fqOK9LB6U9EZrbXbvaZFbqnmLO3U57/wL9PSTh0JsENKkdIrayHjBqUsmLdQuV9uM6NTb581mhIyhGdXy42uufG03zkZfzjV/f5Qu/8T+8ZOP+Y6yzT7uj3qkfftQXelyaUfGCurrXKGhvo6kLpeGBUxNndG+w2M6Ol5QX0del5zXqWXLliTdLKRcWHPDYq+T9TkolYsW1tq/lvTXNXzr22cekKTgdNP30wAqCQKr3fuPaseuvSpMB+WbAW0Z6k10wF2oXZKcbDOiU29Om821q3UBP1TLz6te1qP7HhnxLlfUQ3rQl3NV2h+3bl2vDz9wQE+MPp/5/eMbH/MdZZt93B/1SPv2obrTpwPd/d2nddPdD88Zu7deupaFC4dMTZ3R3fsO6+Z7XuinW65er60bzmPhApEJa25Y7HWYgyRGWwCRGx6dLA+0klSYDrRj114Nj0462y5X24zo1NvnzWaEjKEZ1fKz/8iYl7miHtKDvpyr0v646e6H9ZoNa8v/zvL+8Y2P+Y6yzT7uj3qkfftQ3f4jY+UFC+mFsXv/kexemMNF+w6PlRcspGI/3XzPw9p3mH5CdMKaGxZ7HeYgFi0AxGBkvFAeaEsK04GOTRQSalHRQu1ytc2ITr193mxGyBiaUS0/R8b8zBX1kB705VzV9sfsK7Jmef/4xsd8R9lmH/dHPdK+faiu2vHU0TH63iVHq9ToyDj9hOiENTcs9jrMQSxaAIhBT0de+Za5w02+Jac17fmEWlS0ULtcbTOiU2+fN5sRMoZmVMtPX+cKL3NFPaQHfTlXtf1h7dx/Z3X/+MbHfEfZZh/3Rz3Svn2ortrxVG8nfe+Svio12tNBPyE6Yc0Ni70OcxCLFgBiMNDVqp3bNpYH3NK1+Aa6Wp1tl6ttRnTq7fNmM0LG0Ixq+Rnq6/AyV9RDetCXc1XaH7duXa8v7Hu6/O8s7x/f+JjvKNvs4/6oR9q3D9UN9XXo1q3rzxq7h/o6E24ZZrvkvE7dcvXcfrrl6vXacB79hOiENTcs9jrMQZKxs//MBzXbtGmT3bNnz1lfN8Y0fTPrpH4+jPcmTxUlcoecahlNShBYDY9O6thEQWva8xroanXi5kELtcvVNkeEnKr+Pm82IxnLWLMS2zGu5bSkWn58zZWv7Z6HsVSp6cvQzN8f/atW6tCJk0nuH3LaBB/zHWWbI3ptZ+Z8H/sb4Th9OtD+I2M6OlZQb2deQ32d82/C7UxOs2xq6oz2HR7TyHhBPR15bTivk5twz8WcH4Gw5obFXidDc1DFjVoadysAZFMuZzTY3abB7rakmzLHQu1ytc2ITr193mxGyBiaUS0/vubK13bjbPTlXJX2B/vHXz7mO8o2+7g/6pH27UN1S5fmdOkFq3TpBUm3BAtZtmyJNg2sTroZyJiw5obFXifrcxCXhwIAAAAAAAAAAE7gTAsAqEPp9LzS6acpPj0PjiF7QPOyVEdZ2lb4iYzCB+QUcBs1CpeRz+awaAEANQoCq937j2rHrr0qTAflGyFtGepl4kGkyB7QvCzVUZa2FX4io/ABOQXcRo3CZeSzeVweCgBqNDw6WZ5wJKkwHWjHrr0aHp1MuGVIO7IHNC9LdZSlbYWfyCh8QE4Bt1GjcBn5bB6LFgBQo5HxQnnCKSlMBzo2UUioRcgKsgc0L0t1lKVthZ/IKHxATgG3UaNwGflsHosWwIy1F/TLGNPwY+0F/UlvAiLW05FXvmXusJlvyWlNez6hFiEryB7QvCzVUZa2FX4io/ABOQXcRo3CZeSzedzTAphx+Kknde3HH2z45+968xUhtgYuGuhq1c5tG8+6JuFAV2vSTUPKkT2geVmqoyxtK/xERuEDcgq4jRqFy8hn81i0AIAa5XJGW4Z6dfH2K3VsoqA17XkNdLVyEyVEjuwBzctSHWVpW+EnMgofkFPAbdQoXEY+m8eiBQDUIZczGuxu02B3W9JNQcaQPaB5WaqjLG0r/ERG4QNyCriNGoXLyGdzuKcFAAAAAAAAAABwAosWAAAAAAAAAADACcZam3QbvGSMOS7piQhe+lxJz0Twulng6r57xlq7Je43jSijru7jqGRpe9OUU19kKV/1qLZfEsmolOqcpjmDSW1bFsdSl3Pkctskcpo01/Phg6j2oYtzPnnJLp+OTbOc0yxvu+RYTkOa87Pep83wbd9VzCmLFo4xxuyx1m5Kuh0+Yt9FL2v7OGvbi3iRr8rYL/FJ875O87a5xuV97XLbJPfbl3bs/+ZlaR9maVsxl09971Nbw5blbZfSuf1p3Ka4pGXfcXkoAAAAAAAAAADgBBYtAAAAAAAAAACAE1i0cM+dSTfAY+y76GVtH2dtexEv8lUZ+yU+ad7Xad4217i8r11um+R++9KO/d+8LO3DLG0r5vKp731qa9iyvO1SOrc/jdsUl1TsO+5pAQAAAAAAAAAAnMCZFgAAAAAAAAAAwAksWgAAAAAAAAAAACewaAEAAAAAAAAAAJzAogUAAAAAAAAAAHACixYAAAAAAAAAAMAJLFo0aMuWLVYSDx61PBJBRnnU+UgEOeVRxyMx5JRHHY9EkFEedT4SQU551PFIDDnlUccjMeSURx2PRJBRHnU+KmLRokHPPPNM0k0AFkRG4QNyCh+QU7iOjMIH5BQ+IKfwATmF68gowsCiBQAAAAAAAAAAcAKLFgAAAAAAAAAAwAlLk24AkhcEVsOjkxoZL6inI6+BrlblcibpZgEAMoS5CCVkAUkjg0g7Mg4sjjrxA/0EF5HLcLBokXFBYLV7/1Ht2LVXhelA+Zacdm7bqC1DvRQUACAWzEUoIQtIGhlE2pFxYHHUiR/oJ7iIXIaHy0Nl3PDoZLmQJKkwHWjHrr0aHp1MuGUAgKxgLkIJWUDSyCDSjowDi6NO/EA/wUXkMjwsWmTcyHihXEglhelAxyYKCbUIAJA1zEUoIQtIGhlE2pFxYHHUiR/oJ7iIXIaHRYuM6+nIK98yNwb5lpzWtOcTahEAIGuYi1BCFpA0Moi0I+PA4qgTP9BPcBG5DA+LFhk30NWqnds2lguqdK21ga7WhFsGAMgK5iKUkAUkjQwi7cg4sDjqxA/0E1xELsPDjbgzLpcz2jLUq4u3X6ljEwWtaeeu9gCAeDEXoYQsIGlkEGlHxoHFUSd+oJ/gInIZHhYtoFzOaLC7TYPdbUk3BQCQUcxFKCELSBoZRNqRcWBx1Ikf6Ce4iFyGg8tDAQAAAAAAAAAAJ7BoAQAAAAAAAAAAnMCiBQAAAAAAAAAAcAKLFgAAAAAAAAAAwAksWgAAAAAAAAAAACewaAEAAAAAAAAAAJywNOkGIBxBYDU8OqmR8YJ6OvIa6GpVLmeSbhYAwCHMFW6gH4B0o8bhE/IKVEZt+IF+QtTIWHJYtEiBILDavf+oduzaq8J0oHxLTju3bdSWoV4KCQAgibnCFfQDkG7UOHxCXoHKqA0/0E+IGhlLFpeHSoHh0clyAUlSYTrQjl17NTw6mXDLAACuYK5wA/0ApBs1Dp+QV6AyasMP9BOiRsaSxaJFCoyMF8oFVFKYDnRsopBQiwAArmGucAP9AKQbNQ6fkFegMmrDD/QTokbGksWiRQr0dOSVb5nblfmWnNa05xNqEQDANcwVbqAfgHSjxuET8gpURm34gX5C1MhYsli0SIGBrlbt3LaxXEila6wNdLUm3DIAgCuYK9xAPwDpRo3DJ+QVqIza8AP9hKiRsWRxI+4UyOWMtgz16uLtV+rYREFr2rmbPQBgLuYKN9APQLpR4/AJeQUqozb8QD8hamQsWSxapEQuZzTY3abB7rakmwIAcBRzhRvoByDdqHH4hLwClVEbfqCfEDUylhwuDwUAAAAAAAAAAJzAogUAAAAAAAAAAHACixYAAAAAAAAAAMAJ3NPCE0FgNTw6qZHxgno6uPELAKBxzCnZRd8jC8h5dtDXiBoZA9xGjQJua6ZGWbTwQBBY7d5/VDt27VVhOlC+Jaed2zZqy1AvgzEAoC7MKdlF3yMLyHl20NeIGhkD3EaNAm5rtka5PJQHhkcnyx0sSYXpQDt27dXw6GTCLQMA+IY5Jbvoe2QBOc8O+hpRI2OA26hRwG3N1ihnWnhgZLxQ7uCSwnSgYxMFDXa3Nf36nE4HANnRyJzCPOG/ILA6PnFKv37loCTpc99+SkfGCqEeTyC7XBojoj5uhjsa7WuX8gq3jYwXtGrlMl1z2fkyMxH53LefYjwBHEGNwhdZPfZo9ricRQsP9HTklW/JzenofEtOa9rzTb82p9MBQLbUO6cwT/ivUh9u37xOn/zmEzpxciqU4wlkl2tjRJTHzXBLI33tWl7htr7OvN7wYxfq9vsPlPNyw1Xr1NvBeAK4gBqFD7J87NHscTmXh/LAQFerdm7bqHxLsbtKAR/oam36tTmdDgCypd45hXnCf5X68I4HDuh1m84P7XgC2eXaGBHlcTPc0khfu5ZXuO1MoPIvQ6ViXm6//4DOBIv8IIBYUKPwQZaPPZo9LudMCw/kckavelmP7rr+ch0ZK6ivM6+hvs5QVuQ4hR4A0qOW005zOaMtQ726ePuVOjZR0Jr2hU9PZZ7wVykP3xuZqNiHL7/gHP3ES9ak/i98EC3Xxoh6x7hKsnoKv28a6WvX8toI8hmfYxOV83L8uYJetMaPvKBx1Jr7qFH4wMdjj7DGv2aPy1m08EAQWN33yEgkpxJxCj0ApEM9p53mckaD3W01HSQxT/hpdh5+/crBin14IR++EQIXx4h6xrj5snwKv4/q7WsX81oP8hkv3/OCxlFrfljTXrlGu9uoUbjDt7kk7PGvmeNyLg/lgShPJeIUegBIh6jmCuYJP83Ow+e+/ZS2b15HHyISaRsjsnwKfxb4nlfyGS/f84LGUWt+WJKTbrhq7jHuDVet0xJ+0wmH+DaXuDT+caaFB6I8lSiMU+gBAMmLaq5gnvDT7DwcGSvok998Qte9YlAb1nZoXU87fYjQpG2M8PEUftTO97ySz3j5nhc0jlrzw5Gxgj7xjeIxrjGStdInvvGEXt5/jgbOpZ/gBt/mEpfGPxYtPBD1qUTNnKoDAHBDlHMF84R/5ufhyFhBf/H1g/ri9ivpR4QuTWOEb6fwo34+55V8xs/nvKBx1JofejryOnFySh/98uPlr9FPcJFPc4lL4x+LFh4onUo0/3piYZ1KxA2mAMB/1eaK/lUrdfD4c4zxGRP1sUNWccyUfknUDrlCrVwf28ky0mKgq1Uf+eWXa99TYwqstMRIl5zf6UytoYh+gut8nBddOtZg0cIDUZ5KxA2mACAdKs0V/atW6r5HRhjjM8i305B9wDFTNsRdO+QK9XB5bCfLSJup01Z3fvXgnDzDPfQTXOXrvOjSsQa3p/FE6VSiywfP1WB3W2hhcekGKwCA5syfKw6dOMkYn2FRHTtkFcdM2RFn7ZAr1MvVsZ0sI03Isx/oJ7jM53y6cqzBokXGLXSDFQCA3xjjgfBQT4gCuUJakGWkCXn2A/0El5HP5rFokXGlG6zMxo2LACAdGOOB8FBPiAK5QlqQZaQJefYD/QSXkc/msWiRcaUbrJQKybWbuQEAGscYD4SHekIUyBXSgiwjTcizH+gnuIx8No8bcTsiqTvKu3SDFQBAZY3OEYzx7khqnkd4qCd3+Vxf5Cq9fM5lI8gy0iSXM3rVy3p01/WX68hYQX2dKzTU10GeHUM/wWXV5kVJOnj8ucwcHzSDRQsHJH1H+dINVga72yJ/LwBAfZqdIxjjk5f0PI/wUE/uSUN9kav0SUMuG0GWkRZBYHXfIyOZq2Hf0E9w3fx5MavHB43i8lAO8PmO8gCAaDFH+I8+BKJDfcFF5BLwGzXsB/oJviGz9UnFooUx5rXGmIl5X1thjLnNGPOEMWbMGPOAMebl875nuTHmQ8aYo8aYCWPMZ40x58Xbeu4oDwCortocMTLOHOELn+f5ILA6ePw5feP7z+jg8ecUBDbpJsERrmTD5/qCu5rNN7kE/EYN+4F+Sj9XjjfDQmbr4/3loYwxV0j6G0nzz6P5kKT/Kultkh6XdKOkB4wxl1hrn5r5no9Jeq2k35H0nKQ/kPRFY8x/tNaeiaP9krSmvXhH+dnBzbfk1N3GHeUBIOt6OirPEdNnrILAchqpB6r14Zp2t+d5Tl9GNS5lw9f6grvCyDe5BPzG72j8QD+lm0vHm2Hh+KA+3p5pMXOWxP+S9GVJp+c9l1NxwWKntfaj1tp/kHSNpBWSXj/zPS+S9AZJ/91a+9fW2s9KerWkDZKujm9LpCU56Yar1s25o/wNV63TEm97BwAQloGuVt32CxvmzBHbN6/Tu+55iNNIPTHQ1aqd2zbO6cOd2zaWb8TmKk5fRjUuZcPX+oK7wsg3uQT8xu9o/EA/pZtLx5th4figPj6fafGzkn5X0lsldal4tkRJTtIySeOzvjYp6ZSk1TP/3jzz3y+UvsFae8AYs1/SFkl/G02zz3ZkrKBPfOMJXfeKQRkjWSt94htP6OX952jgXG5iBgBZlssZnXdOfs4c8clvPqEjYwUdmyhws0sP5HJGW4Z6dfH2K3VsoqA17XkNdLU6/xdCC52+TO6yzaVs+FpfcFcY+SaXgN/4HY0f6Kd0c+l4MywcH9TH50WLb0m6yFr7Q2PMu2c/Ya09bYz5uKS3GGO+ouLlod6h4pkWn5v5tpdIOmqtnb9Ed3Dmudj0dOR14uSUPvrlx8tf4/QgAEBJV+ty/cXXD3IaqcdyOaPB7javDrA5fRnVuJYNH+sL7gor3+QS8Be/o/ED/ZRurh1vhoXjg9p5e9KUtfZpa+0PF/iW90g6JulfJT2r4pkY11lrvz3zfIekiQo/NzHz3FmMMdcbY/YYY/YcP3684bbPx+lBCEtUGQXCRE7rxzwRP3JK7lyXZEbJBmrl41hKvrPHx5wiWi6OA+T0bC72U5aFnVH6F8Zav++8LkkzZ1rcaK1tm/n3Skl7JS2XdJOkpyX9gqTfkPQ6a+09xpg7JV1prX3ZvNf6P5Jeaq3dtNB7btq0ye7Zsye0bQgCq+HRSU4PSqdEOjLsjCL1yKnjmCeSyaiU7ZySu7plZiwlG17LTE4bRb4Tx5yPxNUwDpBTBzBeL8rrOZ/+zYyKnerz5aEWco2kdZJ+xFr7rZmvPWCM6ZL0YUn3SBqT1F7hZ9tmnosVpwcBABbCPIEkkDtUQzaQZuQbAOOAH+indKN/sy2tixYXSDojaf6y3tclXWuMaZN0QFKvMWaFtfb5Wd8zKOlr9b5hafVvZLygng5W/wAA4WKeAZqXpTrK0rbCT2QUPiCngNuoUbiMfDYnrYsW35O0RNKPSvrmrK//qKTjkiYl3T/zPT8naZckGWPWSRqS9O563iwIrHbvP6odu/aqMB2Ur7O2ZaiXMAIAmsY8AzQvS3WUpW2Fn8gofEBOAbdRo3AZ+WyetzfiXsS9Kt7TYpcx5g3GmJ82xtwu6b9KusUWfV/SZyT9mTHmN4wxvyjpi5L2Sbq7njcbHp0sh1CSCtOBduzaq+HRyfC2CACQWcwzQPOyVEdZ2lb4iYzCB+QUcBs1CpeRz+al8kwLa+20MeanJb1f0h9JWiHpERVvwv3ZWd/6JkkfknSbigs4/yhpu7X2TD3vNzJeKIewpDAd6NhEoebrrnHKEABkR71jfhjzDLCYtB+LZKmOsrStaZT2WpTIaNKykLEwkNNso07cNzJe0KqVy3TNZefLzHTN5779FDUKJyQ1h6Rp7ErFooW19t2ad0kna+2opOsW+blJSdfPPBrW05FXviU3J4z5lpzWtOdr+nlOGQKA7GhkzG92ngEWk4VjkSzVUZa2NW2yUIsSGU1SVjIWBnKaXdSJH/o683rDj12o2+8/UO6nG65ap94OahTJS2IOSdvYFfvloYwxPz5zI+xKz51jjHld3G1q1kBXq3Zu26h8S3F3lkIx0NVa/p4gsDp4/Dl94/vP6ODx5xQEtvwcpwwBQHbMHvP7OvO67hWDevTouB56emzO3DBbLfMM0AwXjkUWOlYKQ5bqKOltjbov08yFWoxD0hlthu/5zkrGwjDQ1aqP/PLLtf2qF+u3N79YN1z1Yn3kl1/uRU7RHOrED2cC6dPfOqTrXjGo3978Yv36lYP69LcO6Uyw+M8CUQvjWKfeY460jV1JnGnxZUmXS/pWhec2SfqEivea8EYuZ7RlqFcXb79SxyYKWtM+9/SbxVa6OO0UALKjNOb3deb1q5dfqDseKP5l0J1fPVj1ryAWm2eAZiV9LBLHXwVlqY6S3Na0/YVX3JKuxbj4Wo9pyHdWMhaWqdNWd3714Jz+RvpRJ3549uQpXbupv/x5Kt+S0/bN63Ti5ClJ9BOS1eyxTiPHHGkbu2I508IY81ljzD5jzD5JRtKnSv+e/ZC0S9JwHG0KWy5nNNjdpssHz9Vgd9ucAC220lU6ZWg2TjsFgHQqjfnXXHZ++QBbWvyvIBaaZ4BmJX0sEtdfBWWpjpLa1rT9hVfckq7FOPlYj2nId5Yy1qw09DcaQ534YdmS3Fmfp+544IBalsR+URmgomaOdRqZg9I2dsVVyR+S9O2ZhyQ9Nuvfpce/SvpLSa+NqU2xWWilS/L79GgAQH1KY/6SnBacG4A4JX0sstixEvxBXzYn6VrEwtKQbzJWuzT0NxpDnfjh5NSZijV6cupMQi0CwtPIHJS2sSuWy0NZa/9Z0j9LkjFGkt5rrT0Yx3u7YLGbr/h6ejQAoH6lMX/tOSvKlxso8fmvIOC3pI9FuNlpetCXzUm6FrGwNOSbjNUuDf2NxlAnfqhWoz3ciBsp0MgclLaxK/Zzpqy1b8rSgoVU20qXj6dHAwAak8sZXbK2M1V/BQH/JXkskra/Csoy+rJ5fC5wV1ryTcZqk5b+RmOoE/dRo0izRvOdprEr9htxG2N6JH1E0k9JOkfFe1zMYa1dEnOzIlXLSlcQWA2PTmpkvKCeDr9XwgAAtXlpT7v+5FcuU+vypeppX67+1Yz9SF4SxyRp+6ugLEtDX3JcjmrSkO+FkP250t7fWBj14L5czuhVL+vRXddfriNjBfV1rtBQXwf9hMjEOS4wByWwaCHpThUXLP5KxZtuBwt+d0qUVroq3a29kTvCAwD8VW3c71/NXwUhWUkekyx0rAS/+NyXHJdjMT7neyFkv7K09jcWRj34IQis7ntkhH5CLJIYF7I+B8V+eShJV0m6wVp7g7X2Q9ba2+c/EmhTohq5IzwAwF+M+3AV2UTWUQPIKrIPvIB68AP9hDiRt/glcabFhKSnE3jfRC10CtFCd4TP6moaAPig0dNDGfcRpWZOWyabyLooaoBLjMAHjWaffCONRsYLWrVyma657HyZmTh/7ttPcTzkGPoJceIYMX5JLFr8maQbjTFfsdaeSuD9Y7fYKUSN3BEeAJCsZk4PZdxHVJo9bZlsIuvCrgEuMQJfNJJ98o206uvM6w0/dqFuv/9AOds3XLVOvR0cD7mEfkKcOEaMXyyXhzLG3Ft6SLpM0mZJTxlj/nH2czOPe+JoU5wWO4Wo0TvCAwCS08zpoYz7iEqzpy2TTWRd2DXApQTgi0ayT76RVmcClX8RLhWzffv9B3QmE3dk9Qf9hDhxjBi/uM606JBkZ/37azP/XSKpPaY2JGaxU4hyOaNXvaxHd11/uY6MFdTXmddQX2doK2unTwfaf2Rs5rVXaKivQ0uXJnE7EwDwX+kUzu+NTFQc20fGFz89NJcz2jLUq4u3X6mR8YJWLluiqTOBhkcnOSXUc0mf4lvtmGNkvFB+fqF2zc7msYmC1rRzmrKvks6ir8I+LueSa9Ei53PN3h99nXmdCaRjE7Xtm0bG/yzkm8/S2XRsonK2jz9X0IvWpCPbaUA/+cX3OTvsz/BclnFxsSxaWGt/Mo73cdVipxAFgdV9j4xEckrQ6dOB7v7u07rp7ofLr33r1vXaeulaDrYAoE6zT+H89SsHK47t02esgsAuOn7nckYDXa169OiE3vTX3+KU0BRI+hTfILA6fcZWzeWr7/haTe3K5YwGu9tS8wunLEo6iz4L+7h8TXvlzwHdbVy6olnkfK7Z+2PVymVnXTKlln1T7/if9ksK8lk6uxi7/XBu2/KK/dTVujzBVqGStMzZYX6G57KMi4t9pjXG9C/wON8Yc07cbYraYqcQRXlK0P4jY+WDrNJr33T3w9p/ZKzp1waArJk9Xn/u209p++Z1c8b27ZvX6V33PFTz+M0poemSdH8Oj07qpnseOiuXf/Dzl+hd9zxEzjIk6Sz6LOx9tyQn3XDV3Jq84ap1WsLvO5tGzueavT+uuez8sy6ZEsW+SfslBfksnV2M3X6YPHW6Yj9NnjqdcMswX5rm7LC2hcsyLi6JG3EPa+6los5ijHlW0oettbfE0qKILXaqbZSn1R4Zq/zaR8cKuvSCpl4aADJn9nh9ZKygT37zCV33ikH1r16hQ88+r09+8wkdGSvUPH5n4bIKWZJ0f46MF/TE6PPlXBojWSt1rlyqJ0afT6xdiF/SWfRZ2PvuyFhBn/jG3Jr8xDee0Mv7z9HAufRFM8j5XLP3hzGKZd+k/ZKCfJbOLsZuPzz1w+cr9lP/6pXa2L8q6eZhljTN2WFtC5dlXFwSixa/Junjkr4k6TOSRiR1S9o683ivpLyktxljxq21f5xAG0O30Km2UZ5W29e5ouJr93ZyWiMA1Gv+eH1krKC/+PpBXfeKQX30y49Lqm/8TvtlFbIm6f4svf+RscKcPL7qP1xOzjIm6Sz6LOx919OR14mTU+WabPb18AJyPtf8/RHXvknzJQX5LJ1djN1+6KvSTz0d9JNr0jRnh7ktXJZxYUmc3PZfJf21tfa11tpPWmvvs9b+H2vt6yR9RNIV1tp3SPo9Sdcn0L7YRXla7VBfh27dun7Oa9+6db2G+jqbfm0AyJpK4/WtW9frC/ueLv+7nvE77ZdVyJqk+7Pa+w/1dZKzjEk6iz4Le9/RF9Fh3841e3987ttPnXXJlCzvm0bxWTq7GF/8cMl5nbrl6rk1esvV67XhPGrUNWmqqSS3JU37sRbG2gWv1BT+GxpzUtLV1tovVXjupyV93lq7whjz45J2W2tXxtrAGm3atMnu2bMntNcr3f09itNqT58OtP/ImI6OFdTbmddQXyc3DotXIudHh51RpB45rdH88bp/1UodOnGy4fE7yvE/ZRLbKfXkNOn+rPb+SbcrQ5wZS+nzxoW97xzsC2dy2iwH922iZu+P3o68zgTS8ee83DfOzPl8ls6uGsYXZ3KaZVNTZ7Tv8JhGxgvq6chrw3mdWrZsSdLNcokzc36a5uwktyVN+3GWihuQxOWhnpZ0lYqXh5rvKklHZ/7/XEk/jKlNiYvytNqlS3O69IJVXHcTAEJQabxuZvxO82UVsijp/qz2/km3C/GjzxsX9r6jL6LDvp2r0v540Rr2TTP4LJ1djC9+WLZsiTYNrE66GahBmmoqyW1J035cTBKLFh+S9GFjTLekeyQdV/GeFq+V9EZJNxpjBiS9W9J9CbQPAAAAAAAAAAAkIPZFC2vtnxhjTkt6l6Q3zXpqWNL11tq/Msb8koo36P5fcbcPAAAAAAAAAAAkI4kzLWStvVPSncaYF6t4GajDkp60MzfYsNb+X0n/N4m2AQAAAAAAAACAZMSyaGGMuUzSI9ba52f+f7YpFRcuzjWmeN8Na+2/xdEul5RupFK6eVBKbqQCAKnEmI20IttA/Kg7uIIsAi+gHvxAPyFsZModcZ1psUfS5ZL+deb/bZXvMzPPLYmpXU4IAqvd+49qx669KkwHyrfktHPbRm0Z6qUwAMAxjNlIK7INxI+6gyvIIvAC6sEP9BPCRqbcEteixU9J+vdZ/49ZhkcnywUhSYXpQDt27dXF26+s+W7wrAQmh30PZMvsMbuvM69rLjtfjx4d19pzVuiStZ3UfwZUGvcleT8XhHE8An+l6XjGp22h7sKTdL8n/f7NIovAC4ZHJ3Xb7kd03SsGNXNBEN22+xFd3NtOPTiEfkIzgsDqB89M6olnJ9W6bKl6OpbrTCDmQofEsmhhrf1Kpf83xixV8dJQz1hrT8fRFheNjBfKBVFSmA50bKJQU1GwEpgc9j2QPaUxu68zr1+9/ELd8cABFaYD3fnVg9R/BlQb95ctNfrtT33H67mg2eMR+CtNxzO+bQt1F46k+z3p9w8DWQReMDp5Stdu6i8f5+dbctq+eZ1GJ09RDw6hn9CoSvP2DVet04u625gLHZJL4k2NMZcbY/5R0nOSnpK0wRjzN8aYW5NoT9J6OvLKt8ztinxLTmva8zX9fLW/ihkenQy9rZiLfQ9kz8plS5Vvyemay84vHyBL1H9WVBv39z015n0Wmj0egb/SdDzj27ZQd+FIut+Tfv8wkEXgBUbmrOP8Ox44ICM/FiGzgn5CoyrN27fff0BTpwPmQofEvmhhjNksqXS2xTul8mjysKS3G2N2xN2mpA10tWrnto3lwij9ZU7pchOLWeivYhAt9j2QPVNnzmj75nVakhP1n0HVxv1g3t26fMxCs8cj8Feajmd82xbqLhxJ93vS7x8Gsgi84NnJUxVr+tnJqYRahEroJzSq2rx98JlJve/nL2EudERc97SY7TZJd1lr3zBzeagPSJK19g+NMSskXS9pZwLtSkwuZ7RlqFcXb79SxyYKWtNe3zVQS38VM7vgWAmMB/seyJ6u1uW6a88h3fiqi6n/DKo27s+fsn3MQrPHI/BXmo5nfNsW6i4cSfd70u8fBrIIvKCnY0XFmu7pWJ5gqzAf/YRGVZu3TweBLus/R19kLnRCEpeHWi/pb2b+f97fJerLki6MtzluyOWMBrvbdPnguRrsbqurIPirmOSw74HsGehq1du2vEwfvO9Rbd+8jvrPmGrj/obzO1ORhWaOR+CvNB3P+Lgt1F3zku73pN8/LGQRKBrq69CtW9fPqelbt67XUF9nwi3DbPQTGlVp3r7hqnXacH6n+le3Mhc6IokzLY5J+g+S7qvw3Mtmnkcd+KuY5LDvgewp131vu56dPKW7rr9cJ6fOqKeD+s+CauO+JP4iB95K0/FMmrYFtUu635N+fwDhWro0p62XrtW6NW06OlZQb2deQ32dWro0kdvCogr6CY0qzdsvfcuVOvTspFYuW6qejuXqX83c7ZIkFi3+t6T3GmPGJP19qR3GmJ+W9G5Jf5lAm7xX+qsY7mYfP/Y9kD3UfbZV638yAZ+laVxL07agdkn3e9LvDyBcS5fmdOkFq3TpBUm3BAuhn9CoXM7oRWva9KI1zNuuSmLR4j2SLpD0F3rh8lAPqnhD7r+VdHMCbQIAAAAAAAAAAAmLfdHCWntG0puMMbdJ+klJqyWNSfq6tfa7cbcHAAAAAAAAAAC4IYkzLSRJ1tpHJT2a1PsDAAAAAAAAAAC3xL5oYYxZIuk3Jf2UpHMkzb9DjrXWXhV3u9IsCKyGRyc1Ml7gRrEAUAHjJNKKbAPZQs1nG/0fPvYp4DZqNNvo/3RL4kyLD0j6H5IekjQsKUigDZkRBFa79x/Vjl17VZgOlG/Jaee2jdoy1EshA4AYJ5FeZBvIFmo+2+j/8LFPAbdRo9lG/6ff/LMc4vCrkm611l5qrb3aWvvz8x8JtCm1hkcnywUsSYXpQDt27dXw6GTCLQMANzBOIq3INpAt1Hy20f/hY58CbqNGs43+T78kFi2WS3oggffNpJHxQrmASwrTgY5NFBJqEQC4hXESaUW2gWyh5rON/g8f+xRwGzWabfR/+iWxaPEFSZxNEZOejrzyLXO7Od+S05r2fEItAgC3ME4ircg2kC3UfLbR/+FjnwJuo0azjf5Pv1gWLYwxO0oPST+Q9N+NMf/PGHPT7OdmHv8zjjZlxUBXq3Zu21gu5NI13ga6WhNuGQC4gXESaUW2gWyh5rON/g8f+xRwGzWabfR/+sV1I+4PVvjaz8485rOSPhRtc7IjlzPaMtSri7dfqWMTBa1pz2ugq5Wb0gDADMZJpBXZBrKFms82+j987FPAbdRottH/6RfLooW1NtIzOowxr5X0f6y17fO+/npJ75S0TtKTku6w1n541vPLJf2hpF+S1CrpHyRtt9YejrK9ccvljAa72zTY3ZZ0UwDASYyTSCuyDWQLNZ9t9H/42KeA26jRbKP/0y2Je1qEyhhzhaS/kWTmff1aSZ+StFvSqyXtknSHMeaNs77tY5LeIOntkt4k6VJJXzTGLImh6QAAAAAAAAAAYJa4Lg8VupmzJG6Q9F5Jk5KWzXrOSHq/pD+x1r515ssPGGMGJL1S0v82xrxIxQWLX7bW3jXzc9+V9JikqyX9bUybAgAAAAAAAAAA5PeZFj8r6XclvVXSh+c99x8l9Uu6c/YXrbW/Yq39rzP/3Dzz3y/Mev6ApP2StkTRYAAAAAAAAAAAUJ3PixbfknSRtfYOFW/ePduGmf8uNcZ8xRgzZYx50hjz32d9z0skHbXWTs772YMzzwEAAAAAAAAAgBh5u2hhrX3aWvvDKk93Szoj6V4Vb669RdLdkj46c68LSeqQNFHhZydmnjuLMeZ6Y8weY8ye48ePN9F6IBpkdHFrL+iXMSbUx9oL+pPeLK+QU/iAnMJ1ZBQ+IKfwATmFD8gpXEdGETZv72mxiBZJSyTdaa1938zXHjDGXCTp9yTdpeKNu+efoaGZrweVXtRae6dmLjm1adOmSj8LJIqMLu7wU0/q2o8/GOpr3vXmK0J9vbQjp/ABOYXryCh8QE7hA3IKH5BTuI6MImxpXbR4bua/u+d9/UuS/sgYs0zSmKT2Cj/bNvOcV4LAanh0UiPjBfV05DXQ1apcziTdLABwBuMkXEIegeyg3oG5qAn4gJz6gX5CCVlIn7QuWjw+899l877eohfOpDggqdcYs8Ja+/ys7xmU9LXomxieILDavf+oduzaq8J0oHxLTju3bdSWoV4KFADEOAm3kEcgO6h3YC5qAj4gp36gn1BCFtLJ23taLOKrkgqSXjfv6/9F0restacl3a/iJaR+rvSkMWadpKGZ57wxPDpZLkxJKkwH2rFrr4ZH599jHACyiXESLiGPQHZQ78Bc1AR8QE79QD+hhCykUyrPtLDWjhtj3ifp3caYcUlfkXStpJ+Q9OqZ7/m+MeYzkv7MGNMp6YSkP5C0T8WbdocqytOURsYL5cIsKUwHOjZR0GB3WyjvAQA+q3Wc5JRSxCGseZu8Au6rVO+rVi7T8YlT1C5i49J8wWdX+GBkvKBVK5fpmsvOl5kplc99+yly6hj6CSVxzy0uzatplspFC0my1r7XGDMm6S2S3irpe5J+wVo7+z4Xb5L0IUm3qXjWyT9K2m6tPRNmW6I+TamnI698S25OgeZbclrTnm/6tQEgDWoZJzmlFHEJY94mr4Af5td7X2deb/ixC/XGv/pXahexcG2+4LMrfFAaq2+//0C5bm64ap16O8ipS+gnlMQ5t7g2r6ZZKi4PZa19t7X2rKUza+0d1tp11tq8tXaDtfbv5j0/aa293lq72lp7jrX2F621h8NuX9SnKQ10tWrnto3KtxS7s1QwA12tobw+APiulnGSU0oRlzDmbfIK+GF+vb9u0/nlX65I1C6i59p8wWdX+OBMoLPG6tvvP6AzwSI/iFjRTyiJc25xbV5Ns9SeaeGSqE9TyuWMtgz16uLtV+rYREFr2jk1CQBmq2Wc5HIFiEsY8zZ5Bfwwv95PTp2hdhEr1+YLPrvCB8cmKtfN8ecKetEaxmpX0E8oiXNucW1eTTMWLWIQx2lKuZzRYHcbBQIAVSw2TnK5AsSp2XmbvAL+mF3vB48/R+0iVi7OF3x2hetcrBucjX7CbHHNLeQuPqm4PJTrOAUWANzHWA2fkFfAT9Qu4kbmgPpRN36gn5AEchcfzrSIAafAAoD7GKvhE/IK+InaRdzIHFA/6sYP9BOSQO7iw6JFTDgFFgDcx1gNn5BXwE/ULuJG5oD6UTd+oJ+QBHIXDy4PBQDNyi2VMSbUx9oL+pPeKgAAAAAAACB2nGkBAM0KTuvajz8Y6kve9eYrQn09AAAAAAAAwAecaQEAAAAAAAAAAJzAogUAAAAAAAAAAHACixYAAAAAAAAAAMAJLFoAAAAAAAAAAAAnsGgBAAAAAAAAAACcwKIFAAAAAAAAAABwAosWAAAAAAAAAADACSxaAAAAAAAAAAAAJ7BoAQAAAAAAAAAAnMCiBQAAAAAAAAAAcAKLFgAAAAAAAAAAwAksWgBw1toL+mWMCfUBAAAAAAAAwF1Lk24AAFRz+Kknde3HHwz1Ne968xWhvh4AAAAAAACA8HCmBQAAAAAAAAAAcAKLFgAAAAAAAAAAwAlcHioDgsBqeHRSI+MF9XTkNdDVqlyOa/sDSC/GPSBZ1CDSjHwDlVEbSBPy7Af6CbUiK/5h0SLlgsBq9/6j2rFrrwrTgfItOe3ctlFbhnopTgCpxLgHJIsaRJqRb6AyagNpQp79QD+hVmTFT1weKuWGRyfLRSlJhelAO3bt1fDoZMItA4BoMO4ByaIGkWbkG6iM2kCakGc/0E+oFVnxE4sWKTcyXigXZUlhOtCxiUJCLQKAaDHuAcmiBpFm5BuojNpAmpBnP9BPqBVZ8ROLFinX05FXvmVuN+dbclrTnk+oRQAQLcY9IFnUINKMfAOVURtIE/LsB/oJtSIrfmLRIuUGulq1c9vGcnGWrts20NWacMsAIBqMe0CyqEGkGfkGKqM2kCbk2Q/0E2pFVvzEjbhTLpcz2jLUq4u3X6ljEwWtac9roKuVG80ASC3GPSBZ1CDSjHwDlVEbSBPy7Af6CbUiK35i0SIDcjmjwe42DXa3Jd0UAIgF4x6QLGoQaUa+gcqoDaQJefYD/YRakRX/cHkoAAAAAAAAAADgBBYtgAxae0G/jDGhPpYuy4f+mpmWWxr6/lx7QX/SWwUAAAAAAAAsiMtDARl0+Kknde3HHwz1Ne968xWRvGZmBafZnwAAAAAAAMgcFi08EQRWw6OTGhkvqKeDG8YASCfGOgAuy/IYleVtB2pBjQDpQk37gX5Cs8iQu1i08EAQWO3ef1Q7du1VYTpQviWnnds2astQL4UEIDUY6wC4LMtjVJa3HagFNQKkCzXtB/oJzSJDbuOeFh4YHp0sF5AkFaYD7di1V8Ojkwm3DADCw1gHwGVZHqOyvO1ALagRIF2oaT/QT2gWGXIbixYeGBkvlAuopDAd6NhEIaEWAUD4GOsAuCzLY1SWtx2oBTUCpAs17Qf6Cc0iQ25j0cIDPR155VvmdlW+Jac17fmEWgQA4WOsA+CyLI9RWd52oBbUCJAu1LQf6Cc0iwy5jUULDwx0tWrnto3lQipdY22gqzXhlgFAeBjrALgsy2NUlrcdqAU1AqQLNe0H+gnNIkNu40bcHsjljLYM9eri7Vfq2ERBa9q5mz2A9GGsA+CyLI9RWd52oBbUCJAu1LQf6Cc0iwy5jUULT+RyRoPdbRrsbku6KQAQGcY6AC7L8hiV5W0HakGNAOlCTfuBfkKzyJC7uDwUAAAAAAAAAABwAosWAAAAAAAAAADACcZam3QbvGSMOS7piQhe+lxJz0Twulng6r57xlq7Je43jSijru7jqGRpe9OUU19kKV/1qLZfEsmolOqcpjmDSW1bFsdSl3Pkctskcpo01/Phg6j2oYtzPnnJLp+OTbOc0yxvu+RYTkOa87Pep83wbd9VzCmLFo4xxuyx1m5Kuh0+Yt9FL2v7OGvbi3iRr8rYL/FJ875O87a5xuV97XLbJPfbl3bs/+ZlaR9maVsxl09971Nbw5blbZfSuf1p3Ka4pGXfcXkoAAAAAAAAAADgBBYtAAAAAAAAAACAE1i0cM+dSTfAY+y76GVtH2dtexEv8lUZ+yU+ad7Xad4217i8r11um+R++9KO/d+8LO3DLG0r5vKp731qa9iyvO1SOrc/jdsUl1TsO+5pAQAAAAAAAAAAnMCZFgAAAAAAAAAAwAksWgAAAAAAAAAAACewaAEAAAAAAAAAAJzAogUAAAAAAAAAAHACixYAAAAAAAAAAMAJLFo0aMuWLVYSDx61PBJBRnnU+UgEOeVRxyMx5JRHHY9EkFEedT4SQU551PFIDDnlUccjMeSURx2PRJBRHnU+KmLRokHPPPNM0k0AFkRG4QNyCh+QU7iOjMIH5BQ+IKfwATmF68gowpCKRQtjzGuNMRPzvmaMMe80xhwyxpw0xnzJGHPxvO9Zboz5kDHmqDFmwhjzWWPMefG2HgAAAAAAAAAASClYtDDGXCHpbySZeU/dLOkmSR+U9HpJnZLuN8Z0zvqej0l6g6S3S3qTpEslfdEYsyTqdgMAAAAAAAAAgLmWJt2ARhljlku6QdJ7JU1KWjbruXZJN0p6t7X2jpmvfU3SE5Kuk7TTGPMiFRcsftlae9fM93xX0mOSrpb0t/FtTbKCwGp4dFIj4wX1dOQ10NWqXG7+GhAAX1HjAHzCmIWkkUGkHRkHFked+IF+govIZTi8XbSQ9LOSflfSWyV1SfqdWc9dLqlN0r2lL1hrTxhjviJpi6SdkjbPPPWFWd9zwBizf+Z7MrFoEQRWu/cf1Y5de1WYDpRvyWnnto3aMtRLQQEpQI0D8AljFpJGBpF2ZBxYHHXiB/oJLiKX4fH58lDfknTRzJkU8+80/pKZ/35/3tcPznruJZKOWmsnF/ie1BsenSwXkiQVpgPt2LVXw6PzdwsAH1HjAHzCmIWkkUGkHRkHFked+IF+govIZXi8XbSw1j5trf1hlac7JJ2y1k7N+/rEzHOl75nQ2WZ/zxzGmOuNMXuMMXuOHz/eQKvdMzJeKBdSSWE60LGJQkItQjPSmFE0x8UaJ6fwATlNhotjlqvIaDTIYLjIqXvI+NnIKeZzsU7I6dlc7KcsI6NF5DI83i5aLMLo7LMvSl8P6vieOay1d1prN1lrN3V3d4fS0KT1dOSVb5kbg3xLTmva8wm1CM1IY0bRHBdrnJzCB+Q0GS6OWa4io9Egg+Eip+4h42cjp5jPxTohp2dzsZ+yjIwWkcvwpHXRYkzScmNMy7yvt808V/qe9go/O/t7Um+gq1U7t20sF1TpWmsDXa0JtwxAGKhxAD5hzELSyCDSjowDi6NO/EA/wUXkMjw+34h7IQdUPGPiIknfm/X1QUmPzfqeXmPMCmvt8/O+52uxtNIBuZzRlqFeXbz9Sh2bKGhNO3e1B9KEGgfgE8YsJI0MIu3IOLA46sQP9BNcRC7Dk9ZFiwclFSRtlfR+STLGrJL0E5LeM/M990taIunnJO2a+Z51koYkvTvW1iYslzMa7G7TYHdb0k0BEAFqHIBPGLOQNDKItCPjwOKoEz/QT3ARuQxHKhctrLXPGWM+LOlWY0yg4tkW75Q0LunPZ77n+8aYz0j6M2NMp6QTkv5A0j5JdyfScAAAAAAAAAAAMiyVixYz3qHiDbVvVPE+FQ9KeqO1dvb9Kt4k6UOSblPx/h7/KGm7tfZMzG0FAAAAAAAAACDzUnEjbmvtu621bfO+dtpa+3Zrba+1ts1a+ypr7aPzvmfSWnu9tXa1tfYca+0vWmsPx9t6AAAAAAAAAAAgpWTRAgAAAAAAAAAA+I9FCwAAAAAAAAAA4AQWLQAAAAAAAAAAgBNYtAAAAAAAAAAAAE5g0QIAAAAAAAAAADiBRQsAAAAAAAAAAOAEFi0AAAAAAAAAAIATWLQAAAAAAAAAAABOYNECAAAAAAAAAAA4gUULAAAAAAAAAADgBBYtAAAAAAAAAACAE1i0AAAAAAAAAAAATmDRAgAAAAAAAAAAOIFFCwAAAAAAAAAA4AQWLQAAAAAAAAAAgBNYtAAAAAAAAAAAAE5g0QIAAAAAAAAAADiBRQsAAAAAAAAAAOCEpUk3AMkLAqvh0UmNjBfU05HXQFercjmTdLOAzKAGAUSNcQZRIl/wCXlFPcgL4DZqFD4gp41h0SLjgsBq9/6j2rFrrwrTgfItOe3ctlFbhnopICAG1CCAqDHOIErkCz4hr6gHeQHcRo3CB+S0cam9PJQxps0Y8xFjzIgxZsIY8w/GmEtnPW+MMe80xhwyxpw0xnzJGHNxkm1OwvDoZLlwJKkwHWjHrr0aHp1MuGVANlCDAKLGOIMokS/4hLyiHuQFcBs1Ch+Q08aldtFC0uck/ZqkD0j6BUlHJX3NGPPSmedvlnSTpA9Ker2kTkn3G2M6429qckbGC+XCKSlMBzo2UUioRUC2UIMAosY4gyiRL/iEvKIe5AVwGzUKH5DTxqVy0cIY8x8lvUrS71hrP2itvc9a+0ZJD0t6rzGmXdKNkt5trb3DWnuvpJ+R1C7pusQanoCejrzyLXNjkG/JaU17PqEWAdlCDQKIGuMMokS+4BPyinqQF8Bt1Ch8QE4bl8pFC0kvmfnvP8z7+j+ruDhxuaQ2SfeWnrDWnpD0FUlb4migKwa6WrVz28ZyAZWurTbQ1Zpwy4BsoAYBRI1xBlEiX/AJeUU9yAvgNmoUPiCnjUvrjbifnPlvv6ThWV+/SFKHpB+Z+ff35/3cQUlXR9oyx+RyRluGenXx9it1bKKgNe3cxR6IEzUIIGqMM4gS+YJPyCvqQV4At1Gj8AE5bVxaFy2+Jel7kv7EGPNrkh6XdK2kV888n5N0ylo7Ne/nJlRc1KjIGHO9pOslqb+/P+QmJyeXMxrsbtNgd1vSTUGT0prRtMtaDZJT+CBtOc3aOJMFLmWUfKEal3JaQl4x30I5JS9whYvjqQuoUXeQ0erIaWNSeXkoa+0pSddIOqPiAsYJSW+U9P6Zbwkk2Qo/amaeq/a6d1prN1lrN3V3d4fbaCAEZBQ+IKfwATmF68gofEBO4QNyCh+QU7iOjCJsqVy0kCRr7X5r7aUqXiJq0Fp7hYoLFYGk5yQtN8a0zPuxNklj8bYUAAAAAAAAAABIKV20MMasNMb8qjHmPGvtk9baH8w8tUHSw5IeUfGsiovm/eigpMdibCoAAAAAAAAAAJiRykULSdOSPibp9aUvGGMuUvGeFp+X9KCkgqSts55fJeknJN0fZ0MBAAAAAAAAAEBRKm/Eba2dNsb8uaR3GmOOSRqXdJuk45I+ZK19zhjzYUm3GmMCFW/a/c6Z7/vzpNoNAAAAAAAAAECWpXLRYsbbVbyHxQck5SU9IOmt1trRmeffoeL9LW5U8V4WD0p6o7WWe1oAAAAAAAAAAJCA1C5aWGufl/Q/Zh6Vnj+t4sLG2+NrVeOCwGp4dFIj4wX1dOQ10NWqXM4k3SwAIaPWAUSJMQZZQM6zg75G1MgY4DZqFHBbMzWa2kWLNAkCq937j2rHrr0qTAfKt+S0c9tGbRnqZTAGUoRaBxAlxhhkATnPDvoaUSNjgNuoUcBtzdZoWm/EnSrDo5PlDpakwnSgHbv2anh0svw9QWB18Phz+sb3n9HB488pCGxSzQXQoFpqXaLeAd8lVcO1jjGAz1zIOfN0PFzo6zQgr9WRsWyjNtxHjSIOjAWNa7ZGOdPCAyPjhXIHlxSmAx2bKGiwu43VZSAlFqt1ib8mAXyXZA3XMsYAvks658zT8Um6r9OAvC6MjGUXteGHajU6Mk6NIhyMBc1pdh7lTAsP9HTklW+Z21X5lpzWtOclsboMpMVitS5R74DvkqzhWsYYwHdJ55x5Oj5J93UakNeFkbHsojb8sHLZ0oo1unLZkoRahLRhLGhOs/MoixYeGOhq1c5tG8sdXVrZG+hqlbTwyhUAfyxW6xL1DvguyRquZYwBfJd0zpmn45N0X6cBeV0YGcsuasMPU2fOaPvmdXNqdPvmdZo+Eyzyk0BtGAua0+w8yuWhPJDLGW0Z6tXF26/UsYmC1rTPvdt6aeVqdiHVs3LVzJ3cAdSmljpbrNal5usdQLKSrOFaxhgsjGMm9yWd80ZqnFw1Jum+ToOw56S0ZZmMZVdPR14Xdq3QazaslZnp7s9/92k+czmmq3W5Hnj0qN7/i5fq+VOntXL5Uv3vBw9qy/repJuGlOD3rc1pdh5l0cITuZzRYHdbxWt+lVau5l9jrZaVK67PBkSvnjpbqNal5uodQPKSruHFxhhUxzGTP5LMeb01Tq6aw5jWnDDnpLRmmYxlU/+qlXrL5nW66e6Hy3m+det69a9amXTTMEv/qpV6/Y9cqP/12e/ST4gEv29tXjPzqLGWu543YtOmTXbPnj1JN6OstHpX78rVwePP6dV3fO2sVcMvbr+SA7PwJDIauZbRLAu7zhqt90WQU7gusSO7sHMaUQ0jYjWO5YylqKvGEzoWJ6coC2tOCjnLqZnz4SeX53yJnJbw+6yaMOc3id+3xqLiDuVMi5RodOWq2Tu5A1hc2HXGX3wBfqOG/cQxE2pVT42TKyQtrDmJLCNNyLMf6CfEgd+3JocbcWdcs3dyB7A46gwA/MdYjiiQK6QFWUaakGc/0E9wGflsHosWnggCq4PHn9M3vv+MDh5/TkEQzmW9mr2TO4DFVauz/lUrI6lrAJCiO3bIKo6ZsiPO2iFXqJerYztZRpqQZz/QT3CZz/l05ViDy0N5IMqbtzR7J3cAi6tUZ/2rVuq+R0Yyf1MmANHgxm/h45gpG+KuHXKFerg8tpNlpM2ypUbX//igAivlTPHfcA/9BFf5Oi+6dKzh1KKFMSZnrQ0W/85sGR6dLIdFKl4Dbceuvbo4pJu3cG1tIHrz6+zg8ecirWsA2Rb1sUNWccyUfknUDrlCrVwf28ky0mJ4dFK//anvcANdx9FPcJ2P86JLxxqxXh7KGHPQGHNpled+RNKxONvji4Vu3gLAT9Q1gCgxxgCNoXbgMvIJxINa8wP9BITPpbqK/EwLY8x/k7Ri5p8Dkt5kjDlU4VtfIWlJ1O3xUenmLfNXj7l5C+Av6hpAlBhjgMZQO3AZ+QTiQa35gX4CwudSXcVxpsW5kj4487CSts/6d+nxfkk/LummGNrjHZ9v3gKgMuoaQJQYY4DGUDtwGfkE4kGt+YF+AsLnUl1FfqaFtfa9kt4rScaYQNLl1tp/jfp908TXm7cAqI66BhAlxhigMdQOXEY+gXhQa36gn4DwuVRXsd6I21ob6z000sTHm7cAWBh1DSBKjDFAY6gduIx8AvGg1vxAPwHhc6WuYl20kCRjzH+R9FOSztHZl6ey1trr4m4TAAAAAAAAAABIXqxnPhhj3iHp85LeJOk/SXp5hUdY77XEGPO/jDGPG2OeM8b8izFm86znjTHmncaYQ8aYk8aYLxljLg7r/QEAAAAAAAAAQH3ivlzTb0m6U9Iaa+2l1tqXz3tcFuJ7vVXS+yT9paStkr4vabcxprQwcrOKN/7+oKTXS+qUdL8xpjPENgAAAAAAAAAAgBrFfXmocyR92lp7Job3eqOkT1lr3ydJxpgvS3qFpOuMMb8r6UZJ77bW3jHz/NckPSHpOkk7632zILAaHp3UyHhBPR3136Sk2Z8HEI+FapU6BpA2aRvX0rY9C4l6W7O0LxENlzPkctsQL7KQXfS9H06fDrT/yJiOjBXU17lCQ30dWrqU2+mmhe916Hv7kxb3osU/Sbpy5r9RWy5pvPQPa+0ZY8yYpNWSLpfUJuneWc+fMMZ8RdIW1bloEQRWu/cf1Y5de1WYDpRvyWnnto3aMtRbUxiDwOqBx0a076kxBVZaYqRLzu/U5pf2EGbAIQvVuqTyc6tWLtPrNp2vl6xp18v6OnTRuUxMQNb5eMDa7PGNa9K2PQuJeltd25c+1lfWuZahKNpGLv3nck4RLX5H44fTpwP9/f4jOnDsOQVWeuTIuA49O6mfHepj4SIFfB+Dq7X/VS/r0aETJzk+qEHkixbGmGtm/fMBSbcaY3olfUPSyfnfb63925De+qOSbjbG/J2kPZJ+TdKQpHdKesnM93x/3s8clHR1vW80PDpZDqEkFaYD7di1Vxdvv7KmO60fenZSB0ae051fPVgO8g1XrdOLu9s0cG6yd2oH8IKFal1SecHiVy+/UHc8cMDLiRVA+Hw94G72+MY1aduehUS9rS7tS1/rK+tcylAUbSOX6eByThEtfkfjh0dHxvXUiefP6qdHR8a1fu05STcPTfJ9DK7U/tt2P6LpM4He9rl9HB/UII6lx8/OenxAxTMg/pukT8x77rOSPhPi+/6ppK9L+kdJP5T0x5LeZa29V1KHpFPW2ql5PzMx81xFxpjrjTF7jDF7jh8/Xv76yHihHMKSwnSgYxOFmho6Mn5Kt99/YE6Qb7//gEbGT9X080BJtYwiHAvVeum5ay47v7xgUXp+x669Gh6dTKLJTiKn8EGYOa12wO36uNDs8Y1r0rY9C2U06m11aV/6Wl9ZEdXnpyiF0TZy6Rcfc4poufg7Gj5Dne3EyemK/XTi5HTCLcumsDPq+xhcqf2v2bC2vGAhcXywmDgWLS6q4zEYxhsaY4ykf1DxMlD/XdJPSfp9Sb9njPktSUaSrfSjkoIKX5ckWWvvtNZustZu6u7uLn+9pyOvfMvcXZlvyWlNe76m9k5Ona5YiCenTtf080BJtYwiHAvVeuk5Y+T1xBoHcgofhJlTXw+4mz2+cU3atmehjEa9rS7tS1/rKyui+vwUpTDaRi794mNOES0Xf0fDZ6izFabPVOynwnQct9HFfGFn1PcxuFL7l+T4fVE9Il+0sNY+Uc8jpLf9zyredPs3rbV/aq39J2vtTSreq+L9kiYlLTfGtMz7uTZJY/W+2UBXq3Zu21gOY+n0noGu1pp+/sLVrRULsX91bT8PIB4L1XrpuSVGXk+sAMLn6wF3s8c3rknb9iwk6m11aV/6Wl9Z51KG5gujbeQyHVzOKaLF72j8MNhVuZ8uokZTwfcxuFL7/9OFqzk+qIOxttIJBxG9mTFfVuUzHKTiGQ7PSXpc0p9Zax9r4n1+SdKnJPVba5+c9fXXSPq8pBsk3S7ppdba7816/vOSllhrX73Ye2zatMnu2bPnhcbP3Gjt2ERBa9rru5EK1zxNvUQ6cX5GEY6Faj0IrA49O6l/O/RDvePvHvKtnskpXJdYATWbU5/n+WaOb1wUw/Y4M5ZGva2uZMPn+kqQEzl1JUOVNNs2ctk0Z+Z8l3OK6NRYw87kNKuCwOrvHz6q3/nMC/30R6/bqJ9dz1g7ixNzfqN8H4Pnt79/1Urd98gIxwdnq7jxcS9a/KWkX5r554OSRiR1S/oxFe918aCKl4k6V9JPWGu/1eD7/EcVb779S9baT8/6+nslvX3mPQ5I+j1r7ftnnlsl6QlJ77HW/tFi7xH2JOF7IWJBXk8SqJ+n9UxO4TqvPxh6Oi6gfoylCaC+6kZOY0Aum+L1nI90qKGGyakDGGsXxZzvGDJbUcUdsDTmRhxTcbHgZ6y1R0pfNMZ0S/p/kr6q4v0ndkl6n6RXNvIm1tpvG2P+n6Q/McaslvSIpJ+U9DZJt1trnzLGfFjSrcaYQNL3JL1T0rikP29w25qSyxkNdrdpsLstibcHECLqGcB8jAtAdKgvuIhcAn6jhv1AP8E3ZLZ2cS9aXCfp12cvWEiStfa4Meb3Jf25tfZdxpg/l/Tpiq9Qu9dJulXFxYjVKi6WbJf08Znn36HiJaluVPFeFg9KeqO1tu57WgAAAAAAAAAAgObFvWixRMUFgkraJC2b+f9Tzb6RtfZ5Sb8z86j0/GkVLxX19mbfCwAAAAAAAAAANC+3+LeE6v9Jer8x5srZXzTGvELSH0r6ojEmp+J9Lx6KuW0AAAAAAAAAACBBcZ9psV3SFyR9xRjzQ0nHVbwRd6ekr888/wuS3iDptTG3LbVKN3kZGS+op4ObvAASdQEgGowtgP+oY6QBOQ4H+xFwGzWKrMlS5mNdtLDWnpD0n40xr1Txxthdkg5L+qq19p8kyRjzLUkvs9b+IM62RS2pUAWB1e79R7Vj114VpgPlW3LauW2jtgz1pjbUwGJqrYssTQYAmsec2xzG3PTwuS+pYyzGh3yT43AEgdUDj41o31NjCqy0xEiXnN+pzS/tYT8CDqBGkXbzjzn6V63UfY+MZGZ+j/tMC0mStfZLkr5U5bnheFsTvVoOGqM6+B0enSy/ryQVpgPt2LVXF2+/kjvVI7Mq1cVtux/R2nPyOjl1JpOTAYDmpWXOTeIXcvyCLT1878vh0UndtvsRXfeKQZmZ5t62+xFd3NvuVR0jGr7ku9H5yIcFmTgdenZSB0ae051fPVju7xuuWqcXd7dp4FzGg7SjHtx36NlJHT7x/JyvHT7xvA49O0mNIhJxjguVjjlu+4UN2vmlx7z/vFmryBctjDH7JP2ytfZhY8xDkuwC326ttZdG3aa4LXbQGOXB78h4ofy+JYXpQMcmCqkMNFCL+XXR15nXtZv6de2d31x0Mlh7/eW6ZO05HLACOIvvc24QWB16dlL/duiHesffPRTrL+TSsuAD//tydPKUrt3UrzseOFCuge2b1+nZyVOxtZ9flLnLl3wvNh9VypgkLxZk4jQyfkq3339gTn/ffv8BXda/il+IppwvC5RZN/rclCanzpy1sDj63JQGzk26dUibuMeFSsccb/vcPl33ikF99MuPl79v/ufNNB1HxnEj7m9Lmpz1/ws9/i2G9sRuoYNGSfrBM5UPfn/wzORZr1Wvno688i1zuznfktOa9nzTrw34an5dXHPZ+eVfTkgvTAav2bB2zs8VpgPd/+gx7d5/VEGw0PorgCzyec4tHYT/7XeeLi9YSC8ckwyPNn9MspDFjpXgD9/7ctmS3FnHBHc8cEAtS+L42PRCLb76jq/pl/7sX/TqO77GcYdDfMn3QvNRtYxV+0wa9fjvssmp0xX7++TU6YRahLhE+TsahKdw+kzFhcXC6TMJtwxpVO0PF6KaJ6sdc8w/JJ39eTNtx5GRH31ba99Uuj+FtfbXZv5d9RF1e5Kw2C8xnnh2smIQDz3bfPAHulq1c9vG8vuXVgJLf00DZNH8uliSU82TwZlAmf8AB6Ayn+fc0kF4YCuPh1H/Qs7nBR/M5Xtfnpw6U+WXlPH8AiTuD8Sojy/5Xmg+qpaxap9JXVuQidOFq1sr9nf/avfndTQnyt/RIDzV5uznY5qzkS1x/+FCtWOOTReurvp5M23HkbHf08IYs1TS6yVdJalX0nZJr5D0bWvtvrjbE4fSQeP8U4hKoWpdtlT5ltyc8Odbclq5rPnuyeWMtgz16uLtV+rYREFr2v0+NQgIw/y6WNGytHxKacnsyWD25SE++c0nvLrcC4D4+Dznzj4Ir3RMEvUv5BY7VoI/fO/L0gfE+TXQ0xHPL6V9v8xc2vmS74Xmo2oZa11e+TOpawsycbro3Mr9fdG5bvU3whfl72gQns4VLRX7qXNFS4KtQlpVO0aMap6sdsxxxWCXvljl82bajiNjHXGNMV2S7pO0QdK/S1ovqV3SNZI+bIy5ylr7L3G2KQ6L/RKjp2O5brhqXfm0ttJ1+Ho6lof2/oPdbV4GFIjK7LoIAlt1Mrjr+st1/6PHdCaQPvnNJ3RkrJD5D3AAqvN1zi0dhH/u209p++Z1c67nH8cv5Hxe8MFcvvdl0r+UjvsDMerjU76rzUdVF+bal3uxIBMnn/ob4Yr6dzQIx5r25drxypdo55e+V+6nHa98ibrb6SeEL+5jxIXmoGqfN9N2HBn3MvGHJHVIerGkpyVNzXz9FyV9UdL7VDwDI3UWClX/6lat62nT9T8+qMBKOSOt62njtFMgJgtNBpesPUdP/7DABzgAqTb7IPyT33xC1//4oF7S066X9XboonPj+QWNrws+OJvPfZn0LymTXjTB4nzOt1Q9Y/2rW9W/upVf0M/je3+jMfyOxg/9q1s12N06p58Gu1vpJ0QiiWPEeuegtB1Hxr1o8XOS3mytfcIYs6T0RWvtKWPMH0n6VMztcUIuZ7T5pT0aPLeNA0QgIdUmg6R/eQEAcWCsA16Q5C8pqUVEbbGM8Qt6gN/R+IJ+QtxcX8hO23Fk3IsWSyRVu0PJUkl+7sUQuB58IMuoTwBZwFgHuIFaRNTIGLA46sQP9BMwV5pqIrf4t4TqAUm/Z4xZNetr1hjTIukGSV+JuT0AAAAAAAAAAMARcZ9p8TuS/lnS9yV9Q5KV9F5JF0s6R9IrYm4PAAAAAAAAAABwRNxnWqyT9J8kfUzSahUXL3okfV7Sy621j8bcHgAAAAAAAAAA4Ii4z7T4fyre0+KfJP2NpC9aa38QcxsAAAAAAAAAAICD4j7TokfSb0g6Jul3JT1ujHnUGLPTGPPTM/e2AAAAAAAAAAAAGRTrmRbW2mckfWrmIWPMkKRXSrpWxRtxT0rqiLNNAAAAAAAAAADADXFfHkqSZIzpU/Gm21dK+nFJl0g6JWlPEu0BAAAAAAAAAADJi3XRwhjzVyouVFwkaULSNyXdJem3JP2rtXY6zva4JAishkcnNTJeUE9HXgNdrcrlTNLNAlKLmgOQJYx52UOfIwvIOYCoML74gX7yB32FesV9psUbZ/77HUl/KumfrLWPR/FGxpiflPTlBb5lQNIhSe+Q9GZJ50r6Z0lvsdY+GnZ7FirOILDavf+oduzaq8J0oHxLTju3bdSWoV4KGIjA7JpbtXKZXrfpfL1kTbte1tehi85l4gTgt/nHHP2rVuq+R0Y4zsgQji3dwof0aJBzN5BvpFEQWD3w2Ij2PTWmwEpLjHTJ+Z3a/NIe8u0Q+skfzNmVMYcuLO5Fi9WSfkLST6p4dsXHjDEjkr4m6auSvmqtfTik9/o3ST8272t5SZ+dee5JSTdLerukt0kalnSTpPuNMf/BWjsWUjsWLc7h0cnyc5JUmA60Y9deXbz9Sg12t4XVDESEQcYN9fRDqeZWrVymX738Qt3xwAEmTgA1c3ncr3TMcdsvbNDOLz3GcUaGZP3Y0qUa5UN6dFzLuUu5iwv5RlodenZSB49P6s6vHixne8crX6IXd09q4Nz0z6O+oJ/84dqcLSU/bzOHLi4X55tZa39orb3HWvs/rbUvV/Hsht9UcTHhI5K+G+J7jVtrvzn7IWmrJCvpVyS1SrpR0ruttXdYa++V9DOS2iVdF1Y7pOrFOTw6KUkaGS+UnyspTAc6NlEIsxmIQGmQefUdX9Mv/dm/6NV3fE279x9VENikm5Yp9fZDqeauuez88oKFdHZtAsB8ro/7lY453va5fXrNhrVzvo/jjHTL8rGlazW62OcANM6lnLuWu7iQb6TVsYlT2vml783J9s4vfU/HJ04l3DLMRj/5w6U5W3Jj3mYOXVysixYlxpiLjDHXqbhQ8TFJr5X075J2Rvie/0HSb0u6yVp7XNLlktok3Vv6HmvtCUlfkbQlzPderDh7OvK6sGuFfuunXqzf3lx8XNi1Qmva8zW/RxBYHTz+nL7x/Wd08PhzqT9AdgWDjBuq9cNDT/+wYi30dOSVb8nJGDk1cQJwX7Xx5gfPTDoxD1c75lgy74gv35KreJzB8UQ6lOa52ar1eUla+t61Y7NaPqSnZd/HrVrOjUzs+9G13DWq3iy69ksoICxjz09XzPYPn8/sbVidRD/5o5Fj0ygt9JkuruMy5tDFxX0j7r+U9FOS+lW8Eff9kt4t6e+ttU9F/Pa/L+l7kv5s5t8vmfnv9+d930FJV4f5xqXinB3G2cXZv2ql3rJ5nW66++HyKUG3bl2v/lUra3r9xU4pSvqUpzRbaJDJwuUXXFGtH+5/9Jie/mHhrNPrBrpa9ZFffnm5XqrVJgDMV228eeTouG78zHcTP7V3TXvlY45NF64uf73UvoGu1jk/yynK6THQ1aqd2zae1Zfz+7wkTX3v2rHZYp8D0rTv41Yp5zdctU7/4669OnFyKtb96Erumvnc10gWF8t3GvBZOpva8y0Vs92eb0mwVZiPfvJHvcemUas2bz86Mq7HRiYWnQvDmBuyMIc2K+4zLV4u6dMqLlyca639BWvtn0W9YGGMuUjFszn+yFpbSkOHpFPW2ql53z4x81yl17neGLPHGLPn+PHjNb9/qThLq4rzi/PQiZPlBQupWCg33f2wDp04WdPrL/SXPS6c8pRmrq0WN5pR361ctrRiP5wJVPWv3KZOW33gHx7V9s3rqtYmopHVnMIv1XJabdz/3shE4n9hGwRWPxh9Tjdcdfa4dsVgl764/Up9+vof1Re3X1nxl1Bp+UvhrFhoLM3ljLYM9S7a5yVp6nvXjs36V63UrVvXz6nJ2X+clKZ9X0mUc/7snP/Vr23S9T8+qE984wkdGSvEvh9dyF2zn/sayeJin3N9US2nfJbOrhVLc2cdT91w1TrllyZysRJJfIaqZEVL5X5a0ZJcP2VZmMemUas2b9uZ3yEtNBeGNTekZQ6NUqxnWszcxyIJvyHphKS/mfU1o+L9LeYzkoIKX5e19k5Jd0rSpk2bak5jqTgv3n6ljk0UtKZ97ipcs3+Zs9gpRa7d7CZNXFstbjSjvps6c0bbN6+bc0Pt7ZvX6ZPffKJiLc3+UPbJbz6h614xqCU56aqL1+iStefw11MRy2pO4ZdqOa007r/v5y/RB/7hsTk/n8Rf2A6PTuq3P/UdrVq5TNe9YlDGSDkj/Ye+di1dmtNgd9uC7XHlL4VRm8XG0lzOLNrnJWnqe9eOzQ6dOKkPP3CgXJPWSh9+4IAu61+lwe62VO37SqKe80s5Hxkv6I77H5/zXJz70YXcNXuT00ayuNjnXF9Uy6mLN45FPEZPntLKliW6/scHFdji8dTKliU6cTK5eyXwGepsz0+fUeuyuf3UumyJnp8+k3TTMinMY9OoDXS16n0/f4ne8XcPzfkd0lM/PLnoXBjW3JCWOTRKsS5aJGirpLuttbNnmDFJy40xLdba2Re8a5t5LlQLFWezpwQt9PNp/yCUNAYZN3S1Ltddew7pA794qQ4cm9CZQPrkN4t/aVeplmbXxZGxgj765eKH3Cte1EXfAVhQpXE/Z6QTJ+eeuJnEX3aXxrbZ45pUHNsGzl18zucU5exKU9+7dmw2Ml7QE6PPz6lJSeVj8TTt+yQlvR9dyF2zn/sa3Ycu/RIqbHyWzq6u1rze8/l/12s2rJUx0plA+ssHf6A7Xp/U3+GikonCaf3pVw7qmsvOL/fTn37loG65eijppsFxuZzRZf3nlBe8rC3+DmnbpvMXnQvDnBvSPIeGIfXnTBlj+iW9TNLfznvqgIpnVVw07+uDkh5TjJo9JWihn3fhVOW0Kw0ylw+eq8HuNn7pnYCBrla9bcvL9MH7HlV+6RL9xdcPlhcsKtUSdQGgGfPH/f7Vbpza2+zYxinK2ZW2vnfp2Gyxukzbvk+KC/sx6dwxB4SPzwzZNdTXobdsXqe/+PpBfeSBx/UXXz+ot2xep6G+zqSbhlkGu1p14uSUPvrlx/WRBx7XR7/8uE6cnNJFGR63ULv+1a26uLdDf/61g+XsXHJ+56JzIXNDfIy16T6rzBjzi5I+o+I9NEZnfb1N0nFJv2etff/M11ZJekLSe6y1f7TQ627atMnu2bMntHaWbuLS6F/mVPt5bu7nhER2dNgZdV2pBp6dPKWWJTmdnDpT9YZI1EVF5BSuS6w4a8lps/N4GMIY21zYDs95O5bS99GopS4T2Pfe5nQhWc9wyuYAJ+Z8PjNk2+nTgfYfGdPRsYJ6O/Ma6uvU0rn3tHAip1kWBFZ///BR/c5nXqjRP3rdRv3semp0llTO+WGpNO9JWnAuZG6IRMUdl4VFi3dL+i1rbXeF594v6X9Ieoek70l6p6S1koastQteIsqXApScOvjMKiYJB1EXZyGncB0fDGvA2JY4xlKcxcG6JKcp5WDWGuXMnJ+ifYrwOZPTLKNGF8WcHwFyF7qKOy8L97RYI+mHVZ57h4o33b5RxXtZPCjpjYstWPiGa6QBZ6MuAKQRYxvgHuoScSFr4WOfAm6jRpEEcheP1C9aWGv/+wLPnZb09pkHAAAAAAAAAABIUOpvxA0AAAAAAAAAAPzAogUAAAAAAAAAAHBC6i8P5YrSTVpGxgvq6eAmLcgeagAAwsW4CviJ2kXcyBxQP+rGD/QTkkDu4sGiRQyCwGr3/qPasWuvCtOB8i057dy2UVuGegk1MoEaQJqtvaBfh596MtTXPO/8C/T0k4dCfU2kC+Mq4CdqF3Ejc0D9qBs/0E9IArmLD4sWMRgenSyHWZIK04F27Nqri7dfGcud5lkBRNKaqQHyC9cdfupJXfvxB0N9zbvefEWor4f0qXVcZQwF3BL15wJqPtsq9X/Sn0V9R01lE3XjB/oJSYzR5C4+LFrEYGS8UA5zSWE60LGJQuSBZgUQLmi0BsgvAFRWy7jKGAq4J8rPBdR8tlXr/1UrWxL7LOo7aiq7kvwdDmpXrZ9GxumnLEhqjGZ8iA834o5BT0de+Za5uzrfktOa9nzk711tBXB4dDLy9wZKGq0B8gsAldUyrjKGAu6J8nMBNZ9t1fp/5bKliX0W9R01lV1J/g4Htas2vq1ctiShFiFOSY3RjA/xYdEiBgNdrdq5bWM51KXVv4Gu1sjfe6EVQCAujdYA+QWAymoZVxlDAfdE+bmAms+2av0/feZMYp9FfUdNZVeSv8NB7abOnNH2zevm9NP2zes0fSZY5CeRBkmN0YwP8eHyUDHI5Yy2DPXq4u1X6thEQWva47sWZmkFcHYhswKIuDVaA+QXACqrZVxlDAXcE+XnAmo+26r1/+rW5bqsf3Uin0V9R01lV5K/w0HtulqX6649h3TdKwZljGStdNeeQ9qyvjfppiEGSY3RjA/x4UyLmORyRoPdbbp88FwNdrfFFmZWAOGKRmqA/AJAdYuNq4yhgJui+lxAzWfbQv2f1GdR31FT2UbduG+gq1Vv2/Iy/cXXD+ojDzyuv/j6Qb1ty8uo0YxIcoxmfIgHZ1qkHCuA8Bn5RZjWXtCvw089mXQzgNgwhgLZQs1nG/0fPvYp4DZqNNvo//Rj0SIDSiuA3MUePiK/CMvhp57UtR9/MPTXvevNV4T+mkBYGEOBbKHms43+Dx/7FHAbNZpt9H+6sWiREkFgNTw6qZHxgno6WF2Eu8gqADAWAllCvQNzURPwATn1A/2EErKQPixapEAQWO3ef1Q7du1VYTooX8dty1AvBQqnkFUAYCwEsoR6B+aiJuADcuoH+gklZCGduBF3CgyPTpYLU5IK04F27Nqr4dHJhFsGzEVWAYCxEMgS6h2Yi5qAD8ipH+gnlJCFdGLRIgVGxgvlwiwpTAc6NlFIqEVAZWQVABgLgSyh3oG5qAn4gJz6gX5CCVlIJxYtUqCnI698y9yuzLfktKY9n1CLgMrIKgAwFgJZQr0Dc1ET8AE59QP9hBKykE4sWqTAQFerdm7bWC7Q0rXbBrpaE24ZMBdZBQDGQiBLqHdgLmoCPiCnfqCfUEIW0okbcadALme0ZahXF2+/UscmClrTntdAV2v5ZjNBYDU8OqmR8YJ6OuY+B8wXZV4WyyoAZEEWxkKOPZBm9eQ7C/UOlNRSG9QEfJDLGb3qZT266/rLdWSsoL7OvIb6OsmpY+gnlNQyt/D5xD8sWqRELmc02N2mwe62OV8PAqvd+4+Wb0hTWm3cMtRLceIsceSlWlYBIEvSPBZy7IE0ayTfaa53oKSe2qAm4LogsLrvkRGOZRxHP2G2heYWPp/4KdWXhzLGXGWM+RdjzPPGmCeMMe8xxiyZec4YY95pjDlkjDlpjPmSMebipNsctuHRyXJRSsUb0ezYtVfDo5MJtwwuIi8AgGYxlyDNyDdQGbWBNCHPfqCfUCuy4qfULloYY/6zpL+X9Iik/yLpI5LeJummmW+5eeb/Pyjp9ZI6Jd1vjOmMv7XRGRkvlIuypDAd6NhEIaEWwWXkBQDQLOYSpBn5BiqjNpAm5NkP9BNqRVb8lNpFC0l/KOk+a+2vWWsfsNZ+QNIfS/opY0y7pBslvdtae4e19l5JPyOpXdJ1ibU4Aj0d+fKNaEryLTmtac8n1CK4jLwAAJrFXII0I99AZdQG0oQ8+4F+Qq3Iip9SuWhhjOmW9J8l3Tn769bat1trf1LS5ZLaJN0767kTkr4iaUt8LY3eQFerdm7bWC7O0nXbBrpaE24ZXEReAEfklsoYE+pj6bJ86K+59oL+pPcUHMRcgjQj30Bl1AbShDz7gX5CrciKn9J6I+5LJBlJk8aYz0t6paRxSX8i6RZJL5n5vu/P+7mDkq6Oq5FxyOWMtgz16uLtV+rYREFr2vMa6GrlRjOoiLwAjghO69qPPxjqS9715isieU1gPuYSpBn5BiqjNpAm5NkP9BNqRVb8lNZFi+6Z/35C0qck7ZT0Eyrew+J5Fc8wOWWtnZr3cxOSOqq9qDHmeknXS1J/vz9/XZrLGQ12t2mwuy3ppiBiYWSUvCBqvo6lyBZy2hzmkuiR0eSQ79qR02zxtTbIKSpxLc/ktDLX+inLXM8oWfFPKi8PJall5r//YK19q7X2y9bad0v6mIoLFzlJtsLPGUlBha9Lkqy1d1prN1lrN3V3d1f7NiAxZBQ+IKfwATmF68gofEBO4QNyCh+QU7iOjCJsaV20eG7mv7vnff1LKt7L4oeSlhtjWuY93yZpLNqmAQAAAAAAAACAStK6aPH4zH+Xzft6aZFiWsWzKi6a9/ygpMcibBcAAAAAAAAAAKgirYsW/y7paUmvm/f1/yLpsKRPSypI2lp6whizSsX7XtwfTxMBAAAAAAAAAMBsqbwRt7U2MMa8Q9L/Nsb8qaTPSvppSW+U9N+stePGmA9LutUYE0j6nqR3ShqX9OdJtRsAAAAAAAAAgCxL5aKFJFlrP2GMmZb0DklvkvSkpN+01t458y3vUPGm2zeqeC+LByW90VrLPS0AAAAAAAAAAEhAahctJMla+38l/d8qz52W9PaZBwAAAAAAAAAASFha72kBAAAAAAAAAAA8w6IFAAAAAAAAAABwAosWwP/P3v3Hx3XVd/5/n7Fkj61fOIosGceOoo3BQU5iWO8SUtyWpFAtZIlLwaH0W2ibbcJ3AbN1A6E0BEhdCi2YJgRKUugC7VLiAg3hx7rQhIWwAfp1GyfE5UeCKzs/bNkRRpLljC37nu8fo5EleSTNjzv3nHPv6/l4zCOgsUZn7uf9Ofdqju69ALyzavUaGWNifQAAAAAAAMB/qb6nBQAgTE898biuueOBWF/zrusvj/X1AAAAAAAAED/OtAAAAAAAAAAAAF7gTItARJHV4PC4hkYL6m7Pq7ezRbkclztBdcgRAAC1y/J+NMvvHagEPQKkCz0dBuqEepEhf7FoEYAostq195C27dyjwkSkfHNOO7Zs0EB/D42EipEjAABql+X9aJbfO1AJegRIF3o6DNQJ9SJDfuPyUAEYHB6faiBJKkxE2rZzjwaHxx2PDCEhRwAA1C7L+9Esv3egEvQIkC70dBioE+pFhvzGokUAhkYLUw1UUpiIdHis4GhECBE5AgCgdlnej2b5vQOVoEeAdKGnw0CdUC8y5DcWLQLQ3Z5XvnlmqfLNOa1oyzsaEUJEjgDELtckY0ysj1Wr17h+V0BZWd6PZvm9A5WgR4B0oafDQJ1QLzLkN+5pEYDezhbt2LLhrGus9Xa2uB4aAkKOAMQuOqVr7ngg1pe86/rLY309IC5Z3o9m+b0DlaBHgHShp8NAnVAvMuQ3Fi0CkMsZDfT3aN3WTTo8VtCKNu5mj+qRIwAAapfl/WiW3ztQCXoESBd6OgzUCfUiQ35j0SIQuZxRX1er+rpaXQ8FASNHAADULsv70Sy/d6AS9AiQLvR0GKgT6kWG/MU9LQAAAAAAAAAAgBdYtAAAAAAAAAAAAF4w1lrXYwiSMeaIpP0NeOlzJT3dgNfNAl+33dPW2oGkf2iDMurrNm6ULL3fNOU0FFnKVzXm2i5OMiqlOqdpzqCr95bFudTnHPk8NomcuuZ7PkLQqG3o4z6fvGRXSMemWc5plt+75FlOY9rnZ72m9Qht25XNKYsWnjHG7LbWbnQ9jhCx7Rova9s4a+8XySJf5bFdkpPmbZ3m9+Ybn7e1z2OT/B9f2rH965elbZil94qZQqp9SGONW5bfu5TO95/G95SUtGw7Lg8FAAAAAAAAAAC8wKIFAAAAAAAAAADwAosW/rnT9QACxrZrvKxt46y9XySLfJXHdklOmrd1mt+bb3ze1j6PTfJ/fGnH9q9flrZhlt4rZgqp9iGNNW5Zfu9SOt9/Gt9TUlKx7binBQAAAAAAAAAA8AJnWgAAAAAAAAAAAC+waAEAAAAAAAAAALzAogUAAAAAAAAAAPACixYAAAAAAAAAAMALLFoAAAAAAAAAAAAvsGhRo4GBASuJB49KHk6QUR5VPpwgpzyqeDhDTnlU8XCCjPKo8uEEOeVRxcMZcsqjiocz5JRHFQ8nyCiPKh9lsWhRo6efftr1EIB5kVGEgJwiBOQUviOjCAE5RQjIKUJATuE7Moo4sGgBAAAAAAAAAAC8wKIFAAAAAAAAAADwQpPrAaAyUWQ1ODyuodGCutvz6u1sUS5nvH9t+IVau8O2rwzbKX5sUwBxYC5pHLZtOlBHtgHS5dSpSHsPjujgSEErO5aqf2W7mpr4u1/fUCfUi89b/cWiRQCiyGrX3kPatnOPChOR8s057diyQQP9PXWHvZGvDb9Qa3fY9pVhO8WPbQogDswljcO2TQfqyDZAupw6Fenuh57UTXc/MpXn7ZvXa/Olq/hA3CPUCfXi81a/0cUBGBwenwq5JBUmIm3buUeDw+Nevzb8Qq3dYdtXhu0UP7YpgDgwlzQO2zYdqCPbAOmy9+DI1AfhUjHPN939iPYeHHE8MkxHnVAvPm/1G4sWARgaLUyFvKQwEenwWMHr14ZfqLU7bPvKsJ3ixzYFEAfmksZh26YDdWQbIF0OjpTP86ER8uwT6oR68Xmr31i0CEB3e1755pmlyjfntKIt7/Vrwy/U2h22fWXYTvFjmwKIA3NJ47Bt04E6sg2QLis7lpbNc08HefYJdUK9+LzVbyxaBKC3s0U7tmyYCnvpOmi9nS1evzb8Qq3dYdtXhu0UP7YpgDgwlzQO2zYdqCPbAOnSv7Jd2zevn5Hn7ZvXq39lh+ORYTrqhHrxeavfjLXW9RiCtHHjRrt79+7Efl7pjvOHxwpa0daYu9k34rUhSXKyMctllFq7E8C29yKnAWyn4KRomzobdNL7fATNi7m0EVI0l3jHwbZNbU5dokdi3Qbs8+HcqVOR9h4c0aGRgno68upf2TH75s7k1AMV1Cnr2OcvgM9bvVB2ozQlPQrUJpcz6utqVV9Xa1CvDb9Qa3fY9pVhO8WPbQogDswljcO2TQfqyDZAujQ15XTp6uW6dLXrkWA+1An14vNWf7H8CAAAAAAAAAAAvMCiBQAAAAAAAAAA8AKLFgAAAAAAAAAAwAssWgAAAAAAAAAAAC+waAEAAAAAAAAAALzAogUAAAAAAAAAAPACixYAAAAAAAAAAMALLFoAAAAAAAAAAAAvsGgBAAAAAAAAAAC8wKIFAAAAAAAAAADwQpPrAaRFFFkNDo9raLSg7va8ejtblMsZ18MCEDN6Ha6QPQDVYM6A78goQkBOAb/Ro/AZ+awPixYxiCKrXXsPadvOPSpMRMo357RjywYN9PcQRiBF6HW4QvYAVIM5A74jowgBOQX8Ro/CZ+SzflweKgaDw+NTIZSkwkSkbTv3aHB43PHIAMSJXocrZA9ANZgz4DsyihCQU8Bv9Ch8Rj7rx6JFDIZGC1MhLClMRDo8VnA0IgCNQK/DFbIHoBrMGfAdGUUIyCngN3oUPiOf9WPRIgbd7Xnlm2duynxzTiva8o5GBKAR6HW4QvYAVIM5A74jowgBOQX8Ro/CZ+SzfixaxKC3s0U7tmyYCmPpOmW9nS2ORwYgTvQ6XCF7AKrBnAHfkVGEgJwCfqNH4TPyWT9uxB2DXM5ooL9H67Zu0uGxgla0cUd4II3odbhC9gBUgzkDviOjCAE5BfxGj8Jn5LN+mV60MMYslnSzpN+SdK6k70u6wVr7r9W+Vi5n1NfVqr6u1phHCcAn9DpcIXsAqsGcAd+RUYSAnAJ+o0fhM/JZn6xfHurDkrZKer+kX5N0XNI3jTHnOx0VAAAAAAAAAAAZlNlFC2NMh6Tfk/Qea+1fWmu/Luk1kppVPPMCAAAAAAAAAAAkKMuXhxqX9EJJg9O+NiHJSlriYkAAAAAAAAAAAGRZZs+0sNaestY+aK09aozJGWMukPTXKi5a/K3j4QEAAAAAAAAAkDmZXbSY5V2S9ql4WagPWGt/XO4fGWOuM8bsNsbsPnLkSKIDBCpBRhECcooQkFP4jowiBOQUISCnCAE5he/IKOLGokXRP0j6ZUnvlXSzMeaPy/0ja+2d1tqN1tqNXV1dSY4PqAgZRQjIKUJATuE7MooQkFOEgJwiBOQUviOjiFuW72kxxVr78OT//JYxpk3S24wxt1hrJ1yOCwAAAAAAAACALMnsmRbGmB5jzO9MLlJM96CKN+LudDAsAAAAAAAAAAAyK7OLFpKepeKNt1896+svk3R48gEAAAAAAAAAABKS2ctDWWt/ZIz5gqQPGWMWq3gj7lepeDPu37XWRk4HCAAAAAAAAABAxmR20WLS6yW9W9IfSlop6d8kvcZa+3mnowIAAAAAAAAAIIMyvWhhrT0u6cbJBwAAAAAAAAAAcCjL97QAAAAAAAAAAAAeYdECAAAAAAAAAAB4gUULAAAAAAAAAADgBRYtAAAAAAAAAACAF1i0AAAAAAAAAAAAXmDRAgAAAAAAAAAAeIFFCwAAAAAAAAAA4IUm1wOAe1FkNTg8rqHRgrrb8+rtbFEuZ1wPC0BM6HGEgJwC8AXzEdKOjAMLo0/CQJ3gI3IZDxYtMi6KrHbtPaRtO/eoMBEp35zTji0bNNDfQ0MBKUCPIwTkFIAvmI+QdmQcWBh9EgbqBB+Ry/gEf3koY8xSY8wvGWNea4xZbozpdT2mkAwOj081kiQVJiJt27lHg8PjjkcGIA70OEJATgH4gvkIaUfGgYXRJ2GgTvARuYxP0IsWxpg/kHRQ0jcl/S9JF0j6mDHmfmNMh9PBzRJFVvuOHNN3f/q09h05piiyrockSRoaLUw1UklhItLhsYKjEQH+8LVvq0GP+y0NGYsDOQXSJeS5jfkICwk53xIZr1bo9UZt6JMwDI0WtHzZYr3pJRfqzVcUH8uXLaZOcCrO+SPr+6BgLw9ljHmzpPdLeq+kXZL+efKpWyX9jaTtkt7iZnQz+XxqUHd7Xvnm3IyGyjfntKIt73BUgHs+92016HF/pSVjcSCnQHqEPrcxH2E+oedbIuPVSEO9URv6JAwrO/J6/YvO1633PjrVo2+9cq162qkT3Ilr/mAfFPaZFv9D0nuttdslPVj6orX2HyW9U9KvORrXWXw+Nai3s0U7tmxQvrkYhVIT9Ha2OB4Z4JbPfVsNetxfaclYHMgpkB6hz23MR5hP6PmWyHg10lBv1IY+CcPpSFMLFlKxR2+991Gdjhb4RqCB4po/2AcFfKaFpFWSvjfHc/skdSY4lnnNd2pQX1ero1EV5XJGA/09Wrd1kw6PFbSijbvaA5LffVsNetxfaclYHMgpkB6hz23MR5hP6PmWyHg10lBv1IY+CcPhsfI9euRYQf9hBT0KN+KaP9gHhb1o8aik/yrpn8o8d+Xk817w/dTCXM6or6s1M6EHKuF731aDHvdTmjIWB3IKpEMa5jbmI8wlDfmWyHil0lJv1IY+8R89Cl/FMX+Q77AvD/Wnkt5ijPm0pFdLspL+kzFmu6Q/kLTD5eCm49RCIDz0LRqNjAFII+Y2pBn5zhbqDfiNHkWake+Az7Sw1v6dMWaxpD+R9FuTX/5LScOS/sBa+ylXY5uNUwuB8NC3aDQyBiCNmNuQZuQ7W6g34Dd6FGlGvgNetDDGrLHWftoY8xlJz1HxHhYjkn5krT3tdnRn49RCIDz0LRqNjAFII+Y2pBn5zhbqDfiNHkWaZT3fIV8e6n5jzG/aoh9bax+w1u71ccECAAAAAAAAAAAsLORFi2ZJP3c9CAAAAAAAAAAAEI9gLw8l6T2S/tIY82FJP5R0ePY/sNb+a9KDAgAAAAAAAAAAtQl50eLjk//90OR/7bTnzOT/X5ToiAAAAAAAAAAAQM1CXrR4iesBAAAAAAAAAACA+AS7aGGt/VbpfxtjWiS1SfqZtfaku1EBAAAAAAAAAIBaBbtoIUnGmJdKep+kF0z72m5J77bW7nI2MM9EkdXg8LiGRgvqbs+rt7NFuZxxPSx4irwgDcgxAKBR2McA5dEbSBPyHAbqhEqRlfAEu2gxuWDxNUn/n6TflzQkaaWkayR9xRjzX6y133A4RC9EkdWuvYe0beceFSYi5Ztz2rFlgwb6e2hOnIW8IA3IMQCgUdjHAOXRG0gT8hwG6oRKkZUw5VwPoA7bJf2DtfZya+1t1tq7rLV/Ya19kaQvSHq34/F5YXB4fKopJakwEWnbzj0aHB53PDL4iLwgDcgxAKBR2McA5dEbSBPyHAbqhEqRlTCFvGhxsaRPzvHcX0vakNxQ/DU0WphqypLCRKTDYwVHI4LPyAvSgBwDABqFfQxQHr2BNCHPYaBOqBRZCVPIixaHJK2e47k1klguk9Tdnle+eWaZ8805rWjLOxoRfEZekAbkGADQKOxjgPLoDaQJeQ4DdUKlyEqYQl60+IKk9xljfmX6FyfvdbFd0hedjMozvZ0t2rFlw1Rzlq7b1tvZ4nhk8BF5QRqQYwBAo7CPAcqjN5Am5DkM1AmVIithCvZG3JLeI+lFkr5ujBlV8Ubc3ZLaJX1f0o3uhuaPXM5ooL9H67Zu0uGxgla05dXb2cKNZlAWeUEakGMAQKOwjwHKozeQJuQ5DNQJlSIrYQp20cJaO26M2STpFZJ+UdJyST+T9B1JX7XWRvN9f5bkckZ9Xa3q62p1PRQEgLwgDcgxAKBR2McA5dEbSBPyHAbqhEqRlfAEu2gx6QJJy621b5ckY8xzJf2WpAclPeFyYAAAAAAAAAAAoDrB3tPCGPNiSQ9Jevu0Ly+X9HpJe4wxlzgZGAAAAAAAAAAAqEmwixaSPiDpG5JeUPqCtfZ7ki6U9C1JH3Y0LgAAAAAAAAAAUIOQFy0ukXS7tXZi+hettScl/aWk/+RkVAAAAAAAAAAAoCYhL1r8XNJFczx3oaRjyQ0FAAAAAAAAAADUK+QbcX9O0nZjzFFJX7HWjhpj2iRdJWm7pL9xOjoAAAAAAAAAAFCVkBct3iXpOZL+VpI1xkxIapZkJH1F0h86HBsAAAAAAAAAAKhSsIsW1tqCpKuNMZdKepGkcySNSHrAWvug08EBAAAAAAAAAICqBbtoUWKtfUjSQ5JkjOmRtMoYs8hae9rtyKoTRVaDw+MaGi2ouz2v3s4W5XLG9bAAVIE+RiORLwA+YU5CmpFvAMwDYaBO6UZ9sy3YRQtjzHJJt0v6vrX2NmPMZkk7JS2StM8Y8zJr7b+7HGOloshq195D2rZzjwoTkfLNOe3YskED/T00IxAI+hiNRL4A+IQ5CWlGvgEwD4SBOqUb9UXO9QDq8EFJL5W03xiTk/QxSd+V9BJJT0v6kMOxVWVweHyqCSWpMBFp2849GhwedzwyAJWij9FI5AuAT5iTkGbkGwDzQBioU7pRX4S8aHGVpN+31n5J0iZJPZL+zFr7bUl/IukKl4OrxtBoYaoJSwoTkQ6PFRyNCMieKLLad+SYvvvTp7XvyDFFka3q++ljVKuazJEvAD5J+5xU7zEBwpb2fM+H7ANFWZ4HQkKd0s3H+rKfTFawl4eS1Crp8cn//QpJBUn3Tv7/E05GVKMVbXnlm3MzmjHfnFNXa97hqIDsiOO0w+728n28oo0+xtmqzRz5AuCTNM9JXIoAac73fMg+cAaf0YSBOqWbb/tj9pPJC/lMi3+TtNkY0y3ptZL+yVpbMMYskvTfJT3idHRVWJST3nrlWuWbi+XIN+f01ivXalHI1QEcqWXlO47TDns7W7Rjy4YZfbxjywb1drbU9kbgtXr/wqLazJEvAD5J85zk4lIE/NWeX9Kc7/lwGQ7gDD6jCQN1SjdX++O5jsvYTyYv5DMt3i3pC5LeKumkpD+d/PpPVLxU1H91NK6qHRwp6DPf3a9rX9wnYyRrpc98d782rH6Wes9tdT08IBi1rnzPd9phX1eroshqcHhcQ6MFdbfn1dvZctbr5XJGA/09Wrd1kw6PFbSirfy/Q/ji+AuLhTI3G/kC4JM0z0nVzs/1KrdPuf11z9cFna06PDb3cQcaJ835Lil3bDtX9odGG5N9wGd8RhMG6pRuLvbH8/2un/QxYq0q+fwqFMEuWlhrv2aMea6k/yzpX6y1/z751Pskfdta+6i70VWnZUmTjh4/qY9+87Gpr+Wbc2pZvMjhqIDwzLXyvW7rpnl3IvOddljNB9S5nFFfV6tXOyzEr9aclUSR1anTtupTXckXAJ+kdU5K+lIEs/cpy5ct1qNDx/Tmzz7IpQccSmu+pbk/kDlv+dKy2V/G76TIID6jCQN1Sr+k98fz/a7v2+WqyknbJayCPmnKWnvAWvv5aQsWstZ+cvqChTFmkTHmtDHmBW5GubCJU1HZU9omTnNqOFCNWm/UNN9ph5wCiNnqvSHY4PC4bvrSD7T1ipnz/gd+/ZLUX3oCAHyX9KUIZu9TXvWC83TrvY9y3IGGmevYduJUdNaxydYr1mridDTfywGpxGc0YaBOiNt8v+uHcPnItH1+FeyZFlXyejlppDBR9pS2dT1trocGBKXWle/5TjsM5RRAJKfev7AYGi1o//Az+pvvzZz3Vz0rH+RfPwBAmiR9KYLZ+xRjxHEHGmquY9vRwoTu2n1gxrHJXbsPaGB9j6ORAu7wGU0YqBPiNt/v+iFcPjJtn19lZdHCa+ef01L2lLY15/izWgeEoLTyPftUuEpWvuc67TCEUwCRrHpyJp3J1MGRwtS8n2/O6ddfsKqRwwYAVCjJSxHM3qcsMuK4Aw0117HtmnNadOPARTUf3wBpwmc0YaBOiNtCv+v7fvnItH1+lelFC2PMIhVv5P17ktZI2i/pY5I+aq1N7HyyC84t3xQXnMtEC1SjESvf9X5AjfSpN2dkCgBQMnuf0tOe13N72tlHoGHmOg654NwWXXBui9d/QQokhc9owkCdELcQzqaYT9o+a8j0ooWkd0l6h6Q/lvQ9SZsk/YWkZZL+LKlBhN4UgE/iXvmmP1FOPTkjUwCA6WbvU9acwwfHaJyFjkN8/gtSICkcr4eBOqERfD+bYj5p64nMLloYY3KStkn6c2vtn0x++V5jTJekG5TgooUUdlMAaUd/Im5kCgAwF/YRaDQyBiyMPgkDdQJmSlNPZHbRQlKHpM9I+uKsr/9YUpcxpsVa683t1aPIanB4XEOjBXW3h71SBmBu9DqSQM4ApBlzXHZQazQaGQP8Ro8CfqunRzO7aGGtPSrpzWWe+q+SnvBtwWLX3kNnXZNsoL+HyRhIEXodSSBnANKMOS47qDUajYwBfqNHAb/V26O5BMYYDGPMf5P0K5rj0lDGmOuMMbuNMbuPHDkS68+OIqt9R47puz99WvuOHFMUnbkP+ODw+FSBJakwEWnbzj0aHPZmXQWeaGRG02a+nnMlK72etpz6mKX5ZCVn9UpbTpE+C2U0tLkpLsxxfmnkXEqtEZe5ckrGss23/SjHpmejR/3CsSlmq7dHgz7TwhjTJ+kXrLV/M/n/nyvptyTdYa19XJKstaeNMb8j6d8XeK3flPRxSZ+XdHu5f2OtvVPSnZK0cePG2LproZWnodHCVIFLChORDo8VYrlGGafTpUejMpo2vv1FRqkHfzI0pv+2qU9f+JcndHCkICneXvdFmnLqW5YqUcs+JYv7iTTlFOk0X0aTnpt8miMafdyM6jRyLp2r1kOj89fap7zCD3PldGi0oOXLFutVLzhPZjIiX/iXJ5hPMsDHY3yOTc82V48utB9AY/h0bOqbrB571HtcHuyihTHmxZL+t6RBSX8z+eXlkl4v6Y3GmCustQ9LkrX20wu81u9L+pCkeyT9prU20R3AXCtP67ZuUl9Xq7rb88o352YUOt+c04q2fN0/O+sTB7JpoZ5LUrke3HrFWv3N9/br4Eghtl5HY/iUpUpVu09hPwGEJ8m5ybc5opHHzfDLssVNZWu9bPGiOb/Ht7zCbys78nr9i87Xrfc+OpWXt165Vj3tzCdpF+Ixfha15ZvK9mhbPtiPOlMryz2V5WOPeo/LQ7481AckfUPSC0pfsNZ+T9KFkr4l6cOVvIgx5n2Sdqi48PFqa+3J+Ic6v/lWniSpt7NFO7ZsUL65WK5SwHs7Wyp6fS49hZA14hTChXouSeV68Lb7HtWrXnBe1b2O2tWaM5+yVKlq9ynsJ4DwJDk3+TZH1HvcHLosXXrh5OnT2nrF2hm13nrFWk2cjub8Ht/yGrcs1T8JpyNNfRgqFfNy672Pap6IISVCPMbPouMnT5ft0WdOnnY8MszWqJ4KYb+X9mOP+dR7XB7y8uMlkq621k5M/6K19qQx5i8lfXGhFzDGvFXSH0q6VdLvJ32GRclCK0+5nNFAf4/Wbd2kw2MFrWir/FQi15eeAurRqBVpn/4Kc64evGRVu762dVNmTht0qZ6c+ZSlSlW7T2E/AYQnybnJtzminuPm0GXtL/k6W5bort0HdO2L+2SMZK101+4DGljfM+f3+JbXOGWt/kk4PDZ3Xv7DirDzgvmFeIyfRccKp8r26LETpxyNCHNpRE+Fst9L87HHQuo9Lg/5TIufS7pojuculHRsvm82xqxU8WyNH0j6nKQXGmMum/ZIbEGnmpWnapdVFlrRK00c07Ezhi8atSLty19hRpGdurTBdPnmnNZ2t6mvq9WrnW1a1ZMzX7JUUulfmuRyRn1drbqs79wFc8Z+AghPknOTj3NENXNcOSH81V45WftLvt7OFt04cJE++Z19uv2+x/TJ7+zTjQMXzZtzH/NarbnymbX6J2Gu4/T5LkGGdOjtbNHtr3u+tl55od58xYV665UX6vbXPT8zZ+2F4ty2JWV7tLNlsaMRYS6NODYNZb8X4rFHnMfC9RyXh3ymxeckbTfGHJX0FWvtqDGmTdJVkrbrzH0u5vKrkpZIuljSd8s83yXp6bgGO99NVxZaeapn9XChFb3SxDH7tdkZwweNWpGe3nM/Gz+h5kU5HT95WoPD44n9NWaprz+w64faesVa3Xbfo/SgI/Xm7LndbfrYb75ALUua1N22RGvOcfMXvY36SxP2E0B4kjzbIG1zRCPm0qRuvpi1v+SrJeeh53W+fLqqf5pvLlq6BNn04/SFLkEGIDmno0h/+qqL9e9Pjyuy0iIj9Z7bosjNRVQwj0Ycm4Zy3DPfsYeP+1CfzmAJedHiXZKeI+lvJVljzISkZklG0ldUvOzTnKy1n5L0qcYOsaiSgpdWnso1Vj03rGnkpaeARmvkabm5nFFvZ4t+dGjMyWQ8va//5nv7de2L+7QoJ125boUuXvUsejBBteZsrrl9zTluPvho1M3N2E8AYZrv2DLun5OmOSLuuTTJX/yyeDmTanMeel7ny6eL+vv0wUYj1HIJMqTDgZ+N69GhY7rz2/tm3OD5wq5W9Z7rz4ehWde8KKcjYydm1GnbS5+jtVy+zUtxH5uGctwz17GHJC/3oT7dND3Yy0NZawvW2qslPV/SmyXdImmrpP9orX2ltdabOyTVe8pSPTesqeS0xnpPoQcapZGXt4giqx88+XNnpxNO7+uDIwV99JuP6bZ7H9MzE6fpwYRVm7PSqZL/3+DPvDodtZE3DGQ/AWA+aZoj4p5Lk7x0gW+XLPRVyHmdL58uLmcTyqU5atXb2aJ3XfU8LZr81KQpJ73rqufRUxkwNHqi7A2eh0ZPOB4Zphs/cVo7vvGTGXXa8Y2faPwEN+LOApfHPdVePqncsYev+9BGfq5QrZDPtJAkWWsfkvSQ63HMp95TlupdPTx5ys5Yed6xZUNV4wdcadRfw5X+KuxHh0adnU4Yyl8FZEE1OZv+F4X/bVOfV6ejkikAqF/cc+lcvwcMjca/rwj9LAIsbKF8Jv17XyiX5qgHv0tn0/jJ8jd4Pn6SGzz7ZPwEdcoyV8c9cZ1l6Os+1KfPFYI908IYkzPGXG+M+ZIx5p+MMffNetzreowl9d50pZ7VQ19X7oBKNeKv4Up9EVk5uyESfw3pl0pzNntO9emGWmQKAOoX91ya9I18Qz6LAAubL58ufu8L8eai1eB36ew6/5yWstl2dRlYlMeNuOHiuCeufYOv+1CfPlcI+UyLD0l6q6QHJT0hydu7YdV7w7d6Vg99XbkDXCr1xRf+5QlnN8HmryHDNH1OdZmfcsgUANQv7rmUG/kiTvPl08XvfaHf2Hwh/C6dXRecWz7bF5ybjmynxYlTp/X7v/IcffiffjJVp9//lefoJPtYNFBc+wZf96E+fa4Q8qLF/yPpvdba97oeyELiKHitN6zx6bQewBelvjg4UnB6E+ykbpKK+EyfU0v5ue4X+/T81c/S+Z0tzhcJyBTKWbV6jZ564vFYX/PZ563Wk48fiPU1AV/EOZdyI1/Eba58uvi9z6cPNhqB36WzK+3ZTovOliX67D/vn7GP/ew/79dLn9ftemhIsbj2DT7PM758rhDyosUSSd92PYhq2fnvzRI7X1fukD1RZDU4PK6h0YK6291OxtP74uBIQZ/8zj7t2LIh0QUL+GmhnM6eU48eP6l1Pe36peesIDvw1lNPPK5r7ngg1te86/rLY309IK16O1t048BFM47Fb3/d82Wt9N2fPu38mAjpMd/vfY08Dvflg41G4HdpSMl/hoPK9Xa26F1XPU8PPzGiyEpNOeldVz2PHkVD9Xa26PbXPX8qd4uMdPF5HTXlLs370DiEvGjxVUmbJX3T8TgWFNdNWmrh88odssNlD5RDX6CcSnJKdgAA1Zi93+hpz+vfDo7pFR+534tjIqTHXMcokrw6Dg8Jx33Z5dvvr5jbyVNWd35734w6AY1G7pIR7I24Je2S9FvGmC8bY24yxmyb9fh91wMscX0DL27IB9dc90A59AVmqzSnZAcAUI3p+43IyrtjIqRHuWMUH4/DQ8JxXzbRN2GgTnCB3CUn5EWL/ynpWZJeIekWSR8s8/DCfDdpAbKAHkAIyCkAoNHY1yBpZA6oHn0TBuoEF8hdcoJdtLDW5hZ4LHI9xpLSTVqm4wZeyBJ6ACEgpwCARmNfg6SROaB69E0YqBNcIHfJCXbRIiSlG3iVQs0NvJA19ABCQE4BAI3GvgZJI3NA9eibMFAnuEDukhPyjbiDwQ28kHX0AEJATgEAjca+Bkkjc0D16JswUCe4QO6Sw6JFQko38OrranU9FMAJegAhIKcAgEZjX4OkkTmgevRNGKgTXCB3yeDyUAAAAAAAAAAAwAssWgAAAAAAAAAAAC+waAEAAAAAAAAAALzAogUAAAAAAAAAAPACixYAAAA1WLV6jYwxsT5WrV7j+m0BAAAAAOBUk+sBAAAAhOipJx7XNXc8EOtr3nX95bG+HgAAAAAAoeFMCwAAAAAAAAAA4AUWLQAAAAAAAAAAgBdYtAAAAAAAAAAAAF5g0QIAAAAAAAAAAHiBRQsAAAAAAAAAAOAFFi0AAAAAAAAAAIAXmlwPAPGIIqvB4XENjRbU3Z5Xb2eLcjnjeljAWcgqXCF7AAAX2P8AM9ETCAE5DQN1QglZSB8WLVIgiqx27T2kbTv3qDARKd+c044tGzTQ30ODwitkFa6QPQCAC+x/gJnoCYSAnIaBOqGELKQTl4dKgcHh8anGlKTCRKRtO/docHjc8ciAmchqPKLIat+RY/ruT5/WviPHFEXW9ZC8R/aKyA4ANN70ufYHT/6c/Q+8lvSxAcdkCAE5DQN1Qkkjs8Dv0O5wpkUKDI0WphqzpDARaWi0oL6uVkejAs42V1YPj5HVSvEXBLUhe2QHAJIwe67deuWFmd//wF8ujg04JkMI+IwlDNQJJY3at/A7tFssWniinmuvLVvcpHxzbkaD5ptzWrZ4UaOGC9Skuz1fNqsr2vIORxW/Rl5Lca6/IFi3dRMHZvMIPXtxZIrsAEgrn65hPHuujayC3v+gdj7lci4ujg1CPyZDNixb3KTzO5fqqktWyUy27ZcfepLPWDxDnVDSqH1LI/aTIRwf+IJFCw/Uu3J38vRpbb1irW6779Gp7996xVpNnI4W/F4gSb2dLdqxZcNZWe/tbHE9tNg0eiWev06rTcjZiytTZCcQuSYZw0ErUCnf/gJu9lz7hX954qzj9FD2P6idb7mci4tjg5CPyZAdkY30xl+8UO/9yt6pnL77qn5Zy2VhfEKdUNKofUvc+8lQjg98waKFB+pduetsWaK7dh/QtS/ukzGStdJduw9oYH1Po4cOVCWXMxro79G6rZt0eKygFW3pW1Vu9F+s8ddptQk5e3FliuwEIjqla+54INaXvOv6y2N9PcAnvp1FNnuuPThS0F27D+iu6y7TMxOng9r/oHa+5XIuLo4NQj4mQ3bkjJn6IFwq9vB7v7JXd113meORYTrqhJJG7Vvi3k+GcnzgC27E7YH5Vu4q0dvZohsHLtInv7NPt9/3mD75nX26ceAi/loFXsrljPq6WnVZ37nq62pN3S8o9fbzQkp/QZBvLk7f/HVa5ULNXlyZIjsA0qjR+91qlZtrbxy4SBevelZw+x/UzrdczsXVsUGox2TIjuMnT5ft4eMnTzsaEcqhTpiuEfuWuPeToRwf+IIzLTxQ78odf60C+KPRf7FGv2dPXJkiOwDSyLezyJhrIfmXy7mQV6C8uXq4u92vHs466oRGi3s/GcrxgS8408IDcazc8dcqgB+S+Is1+j1b4swU2QGQNj6eRcZcCx9zORfyCpwtpB7OMuqEJMS5nySz1eFMCw/wFy5AetDPiBuZAoC5MUfCR+QSCBs9HAbqhNCQ2eqwaOGJ0sodN14Bwkc/I25kCqjdqtVr9NQTj8f6ms8+b7WefPxArK+J2jFHwkfkEggbPRwG6oTQkNnKsWiRAVFkNTg8rqHRgrrbWcUDJPoC/iCLQGM99cTjuuaOB2J9zbuuvzzW14NfmJeRBuQ4HmxHwG/0KLImS5ln0SLloshq195D2rZzjwoT0dT10gb6e1IbamAh9AV8QRYBwC/My0gDchwPtiPgN3oUWZO1zHMj7pSIIqt9R47puz99WvuOHFMUWUnS4PD4VJglqTARadvOPRocHnc5XCB2c/VAOfQF6lVN3uZDFgH4Iq55LXTMy+Eiw2eQ43iwHbONOcV/9CjqFVqfZy3znGmRAvOttA2NFqbCXFKYiHR4rMD105Aa1a420xeoR5x/3UAWAfgga3+1NR/m5TCR4ZnIcTzYjtnFnBKGuXp0aJQexcJC7POs7Zc40yIF5ltp627PK988s8z55pxWtOVdDBVoiGpXm+kL1CPOv24giwB8kLW/2poP83KYyPBM5DgebMfsYk4Jw7LFTWV7dNniRY5GhJCE2OdZ2y+xaJEC86209Xa2aMeWDVOhLq0c9na2uBgq0BDz9UA59AXqUW3e5kMWgZlWrV4jY0ysDywsznktdMzLYSLDM5HjeLAds4s5JQwnT5/W1ivWzujRrVes1cTpaIHvBMLs86ztl7g8VAqUVtqmN1tppS2XMxro79G6rZt0eKygFW3pvrM8smm+HiiHvkA9qs3bfMgiMNNTTzyua+54INbXvOv6y2N9vTSKc14LHfNymMjwTOQ4HmzH7GJOCUNnyxLdtfuArn1xn4yRrJXu2n1AA+t7XA8NAQixz7O2X+JMixRYaKUtlzPq62rVZX3nqq+rNbVhRnbVstpMX6BWcf91A1kE4FrW/mprIczL4SHDZyPH8WA7ZhNzShh6O1t048BF+uR39un2+x7TJ7+zTzcOXESdUJFQ+zxL+yXOtEiBrK20+SaKrAaHxzU0WlB3O9vehVzO6GUXdeuu6y7TwZGCVnYsVf/KduqAhpg+5/5s/ISaF+V0/ORpDQ6P0/8AgpS2Y0mOzbLHhwyTOyA9+P0yDNQJ9Xpud5s+9psvUMuSJnW3LdGac9h3+4RFi5QorbSl8W7xPosiq117D03dvKe0MjvQ38NEl6Aosvr6D4eoAxKTyxn1drboR4fGyB2AVEjLsSTHZtnlMsPkDkgXfr8MA3VCrebab685x++zLLKGy0MBdRgcHp+a5KTiTXu27dyjweFxxyPLFuoAF8gdAPiHuRkukDsgXejpMFAn1IrshIFFC6AOQ6OFGTftkYqT3eGxgqMRZRN1gAvkDgD8w9wMF8gdkC70dBioE2pFdsLAogVQh+72/NRNe0ryzTmtaMs7GlE2UQe4QO6QabkmGWNifwD1Ym6GC+QOSBd6OgzUCbUiO2HgnhZAHXo7W7Rjy4azroPX28l18JJEHeACuUOmRad0zR0PxP6yd11/eeyviWxhboYL5A5IF3o6DNQJtSI7YWDRAqhDLmc00N+jdVs36fBYQSva8urtbOGmTwmjDnCB3AGAf5ib4QK5A9KFng4DdUKtyE4YWLQA6pTLGfV1taqvq9X1UDKNOsAFcgcA/mFuhgvkDkgXejoM1Am1Ijv+454WAAAAAAAAAADACyxaAAAAAAAAAAAALxhrresxBMkYc0TS/ga89LmSnm7A62aBr9vuaWvtQNI/tEEZ9XUbN0qW3m+achqKLOWrGnNtFycZlVKd0zRn0NV7y+Jc6nOOfB6bRE5d8z0fIWjUNvRxn09esiukY9Ms5zTL713yLKcx7fOzXtN6hLbtyuaURQvPGGN2W2s3uh5HiNh2jZe1bZy194tkka/y2C7JSfO2TvN7843P29rnsUn+jy/t2P71y9I2zNJ7xUwh1T6kscYty+9dSuf7T+N7Skpath2XhwIAAAAAAAAAAF5g0QIAAAAAAAAAAHiBRQv/3Ol6AAFj2zVe1rZx1t4vkkW+ymO7JCfN2zrN7803Pm9rn8cm+T++tGP71y9L2zBL7xUzhVT7kMYatyy/dymd7z+N7ykpqdh23NMCAAAAAAAAAAB4gTMtAAAAAAAAAACAF1i0AAAAAAAAAAAAXmDRAgAAAAAAAAAAeIFFCwAAAAAAAAAA4AUWLQAAAAAAAAAAgBdYtKjRwMCAlcSDRyUPJ8gojyofTpBTHlU8nCGnPKp4OEFGeVT5cIKc8qji4Qw55VHFwxlyyqOKhxNklEeVj7JYtKjR008/7XoIwLzIKEJAThECcgrfkVGEgJwiBOQUISCn8B0ZRRxYtAAAAAAAAAAAAF5g0QIAAAAAAAAAAHihyfUA0HhRZDU4PK6h0YK62/Pq7WxRLmdcDwuoCPlFEsgZ0opsA0B2MOfHj20K+I0ezTbqn24sWqRcFFnt2ntI23buUWEiUr45px1bNmigv4dGhvfIL5JAzpBWZBsAsoM5P35sU8Bv9Gi2Uf/04/JQKTc4PD7VwJJUmIi0beceDQ6POx4ZsDDyiySQM6QV2QaA7GDOjx/bFPAbPZpt1D/9WLRIuaHRwlQDlxQmIh0eKzgaEVA58oskkDOkFdkGgOxgzo8f2xTwGz2abdQ//Vi0SLnu9rzyzTPLnG/OaUVb3tGIgMqRXySBnCGtyDYAZAdzfvzYpoDf6NFso/7px6JFyvV2tmjHlg1TjVy6xltvZ4vjkQELI79IAjlDWpFtAMgO5vz4sU0Bv9Gj2Ub9048bcadcLmc00N+jdVs36fBYQSva8urtbOGmNAgC+UUSyBnSimwDQHYw58ePbQr4jR7NNuqffixaZEAuZ9TX1aq+rlbXQwGqRn6RBHKGtCLbAJAdzPnxY5sCfqNHs436pxuXhwIAAAAAAAAAAF5g0QIAAAAAAAAAAHiBRQsAAAAAAAAAAOAFFi0AAAAAAAAAAIAXWLQAAAAAAAAAAABeYNECAAAAAAAAAAB4gUULAAAAAAAAAADgBRYtAAAAAAAAAACAF1i0AAAAAAAAAAAAXmDRAgAAAAAAAAAAeKHJ9QBQFEVWg8PjGhotqLs9r97OFuVyxvWwAIj+RPzIFHxELgEgG5jvgYXRJ2GgTsBMaeoJFi08EEVWu/Ye0rade1SYiJRvzmnHlg0a6O8JNlhAWtCfiBuZgo/IJQBkA/M9sDD6JAzUCZgpbT3B5aE8MDg8PhUoSSpMRNq2c48Gh8cdjwwA/Ym4kSn4iFwCQDYw3wMLo0/CQJ2AmdLWEyxaeGBotDAVqJLCRKTDYwVHIwJQQn8ibmQKPiKXAJANzPfAwuiTMFAnYKa09QSLFh7obs8r3zyzFPnmnFa05R2NCEAJ/Ym4kSn4iFwCQDYw3wMLo0/CQJ2AmdLWE9zTwgO9nS3asWXDWdcc6+1sSeTnp+kmLUDceY6rP+mzdKmnnknP+WQPlSiXyw/8+iVas3yZ66F5hX4CELr5jkPqneOYI5EWvZ0tuv11z9fDT4wostIiI118Xkdin9GgMtQJjRDnvizp/aLrz5fjxqKFJxY3GV33i32KrJQzxf+fhLTdpAXZ1og853JGA/09Wrd1kw6PFbSirbZf4Oiz9Ki3nnFkKqmxIjtyOaOXXdStO39ro3bv/5lOR9KOb/xYzYty5GUS/QQgDeY6DpFU1xzHHIk0iSKrnx+f0J3f3jeV5+2b1yuKLHn2CHVC3OLcl7nYLyb5WUMSuDyUBwaHx/Xmzz6o2+59TLff95huu/cxvfmzDyZyo5S03aQF2daoPOdyRn1drbqs71z1dbVWPeHTZ+kSRz3rzVSSY0V2HDh6XNf9zW7ddu9j+ug3H9P+4WfIyzT0E4C0KHccUu8cxxyJNNl7cEQ33f3IjDzfdPcj2ntwxPHIMB11Qtzi3Je52i8m9VlDElK7aGGM+WVjjJ3ncb4p+iNjzAFjzHFjzDeMMeuSHqvLG6Wk7SYtyDZf8+zruFCbkOoZ0ljhHnmZH9sHQJrVO8cxRyJNDo6Uz/OhEfLsE+qEuMW5L2O/WL/ULlpI+ldJL5r1eImkYUnfkPS4pJsl3STpg5JeK6lD0r3GmI4kB+ryRilpu0kLss3XPPs6LtQmpHqGNFa4R17mx/YBkGb1znHMkUiTlR1Ly+a5p4M8+4Q6IW5x7svYL9YvtYsW1tpRa+33pj8kbZZkJf2mpBZJN0h6j7X2NmvtPZJ+VVKbpGvjHk8UWe07ckzf/enT2nfkmKLITj1XulFKKcxJ3ijF5c9GtszXA3HxNc++jgtnqySnIdUzpLGienHPq+RlfmwfAKFK4viGORJp0r+yXX/+6ku09coL9eYrLtRbr7xQf/7qS9S/MtG/b8UCqBPiVum+LG2fG/gqMzfiNsY8T9KbJb3JWnvEGPNSSa2S7in9G2vtUWPMtyQNSNoR189e6OYrLm+UkrabtMBPSd2AyNc8+zouzFRpTkOqZ0hjRXUaMa+Sl/mxfQCEKKnjG+ZIpEkuZ5QzuRk3eP7QazaQZ89QJ8Stkn1ZGj838FVqz7Qo408k/UTSX03+/+dM/vens/7dvmnPxaKSm6+4vFFKmm7SAj8leQMiX/Ps67hwRjU5DameIY0VlWvUvEpe5sf2ARCaJI9vmCORFoPD4/qDv5/ZN3/w99xY3jfUCY2w0L4srZ8b+CgTixbGmAskvVLSh6y1pbugtEs6Ya09Oeufj00+V+51rjPG7DbG7D5y5EjFP5+bryAptWa00egBTEdOEQJfc1pCXuF7RgGJnPqA/cXCyClm87FvyOnZfKxTlmUlo+QuOVm5PNTvSToq6W+nfc2oeH+L2YykqMzXZa29U9KdkrRx48aKLxzd3Z7X+Z1LddUlq2QmF9W+/NCTsd58JYqsBofHNTRaUHf7zFOO5nsO6VJrRhutdAOi6RN7vjmnpc2LFEXWSR5LfTE8fkKLF+V0/ORp+iMhrnK60Fw4V05nz9XTX2dlR16nI+nwGPNr2jQ6p/Xum+fKa1drXoNPH9PQ6AmNnzyl889p0QXnkss08nWfD0xHTpNVbt9S6fFNnD9zoX2Ob7+fzpdT38aKZCTxGU61mE/P5mOdssx1RpOar+Pcr7KPmV9WFi02S7rbWnti2tdGJC0xxjRbayemfb118rnYrFm+TG+5Yq1uuvuRqeudbd+8XmuWL4vl9ee7npqkRO4lAMyndAOi6TncesVabf3cg7px4KLE81jqmQ/s+qGu2bhGt933KP2RcpVcd7JcTmffKGv66yxftlivf9H5uvVe8oPqxHE/irny+sTPx/VvT42RSwDImLn2LS+7qHvB45u4f+Z8+5yk7nUXh5DGinid17FUb3rJWt38pTOf4dxy9Xqd17HU9dAwzbPb8nrTL6/VzfdMq9Mr1+vZLFpkTpLz9Zrly7R98/q6P+NlH7Ow1F8eyhizRtJFkr4466lHVTyr4oJZX++T9OM4x3Dg6PGpMEvF04ZuuvsRHTh6PJbXn+96akneSwCYS+kGRHddd5m2Xnmhrn1xn/7me/u1f/gZJ3ks9cVVl6yaWrCQ6I80q/TeQgP9Pfra1k363HUv1Ne2bjrrgGH667zqBedNfTA812sC5cSxby6X1+etbNO/7P85uQSADJpr33Lg6PEFj2/i/pnz7XNC+v00pLEiXj8cGp1asJCKtb/5S4/oh0OjjkeG6R45NDq1YCFN1umeR/TIIeqUNUnO1weOHtdH7ntU1764T2++ovj51kfue7Tqz3jZxyws9YsWkv7z5H+/P+vrD0gqqHgWhiTJGLNc0i9JujfOATT6emfzvT7XWoMvcjmj4ydP67Z7H9NHv/mYDo4UM+gij6W+MEb0R0ZUOhcudKOs6a9DflCruPbNs/N6cKSgyJJLAMii+fYtjboRaC37s5B+Pw1prIjXwZHytT80Qu19cmiOHh0apU5Zk+R8PTRa0P7hZ/TRbz6m2+8rfr61f/iZqn8W+5iFZWHRYr2kp621w9O/aK09JukjkrYbY24wxrxS0i5Jo5I+EecAStc7my7O64jO9/qN/tlANXzJ4/Rx+DAeNF5c2Zv9OuQHtWjUXNjdntciQy4BIItcHGfX8jN9+X2gEiGNFfFa2bG0bO17Oqi9T1bO0aPd7dQpa5Kcrxv12UKtr5NmWVi0WCHp53M8905JOyTdIOmzKt7L4lestbHe06J03enpH5LGdR3RhV6/0T8bqIYveSyN48sPPamtV6x1Pp5qRZHVviPH9N2fPq19R44pirgP20Liyt701/nCvzyht14ZVn7Ijh/WLF+mD/z6JbFnp7ezRRef1xFcLgEA9av1WKeeY4NafqYvvw9UIqSxIl79K9u1ffP6GbXfvnm9+ld2OB4Zprv42R265eqZdbrl6vW65NnUKWsaOV/P3k+uWb4s9s8W4h5zWhhr+cCiFhs3brS7d++u+N+X7gh/eKygFW3x3hE+iqzu+/GQHn5iRJGVcka65LwOXfHcbuVypqE/GxVxsrGrzWhSfMljaRw/Gz+h5kU5HT95Wt3t/vdHA2/WlPqcxpW96a/T057X6Ug6csz/+TUFN/pyNsg4c1qqwwd2/VBXXbJKi3LSxvPP0eV9nWpqqv9vSaLI6sDPxjU0ekLHT57SmnNadMG5/uYyhVI/lyIVyGlKVXusE8exQS3HVxV8jzf7fF9+d0Gyosjq/scOa+yZ0xo/eUoti5vUtnSRNl24Ynr9vclpVkWR1ff+/YhOnZaOHp/Q8mXNalokXXZBF316Rmb2+Y2Yr+faT77som4dOHo81s8WMr6PKfumWbSokU87iX1Hjunlt90/41po+eacvrZ1k/q6Wh2ODJMys5NA4zWw38lpyqVgX5GKXwxTUAfMj7kUISCnkOT1PikV+3yEq8LeIKeOeTyH+YR9fh3IWGLK5jQLl4dKPW7eAmQH/Y5akR0/UAcAgC/YJwHl0RthoE5oNDLmFosWKcDNW4DsoN9RK7LjB+oAAPAF+ySgPHojDNQJjUbG3GLRIgW4eQuQHfQ7akV2/EAdAAC+YJ8ElEdvhIE6odHImFtNrgeA+uVyRgP9PVq3dRM3bwFSjn5HrciOH6gDAMAX7JOA8uiNMFAnNBoZc4tFi5TI5Yz6ulq5EQyQAfQ7akV2/EAdAAC+YJ8ElEdvhIE6odHImDtcHgoAAAAAAAAAAHiBMy0yIIqsBofHNTRaUHc7pzJhfuQFaUCOAbfoQQDIHuZ+pAl5DgN1QqXISnhYtEi5KLLatfeQtu3co8JENHXTmIH+HpoTZyEvSANyDLhFDwJA9jD3I03IcxioEypFVsLE5aFSbnB4fKopJakwEWnbzj0aHB53PDL4iLwgDcgx4BY9CADZw9yPNCHPYaBOqBRZCROLFik3NFqYasqSwkSkw2MFRyOCz8gL0oAcA27RgwCQPcz9SBPyHAbqhEqRlTCxaJFy3e155ZtnljnfnNOKtryjEcFn5AVpQI4Bt+hBAMge5n6kCXkOA3VCpchKmFi0SLnezhbt2LJhqjlL123r7WxxPDL4iLwgDcgx4BY9CADZw9yPNCHPYaBOqBRZCRM34k65XM5ooL9H67Zu0uGxgla05dXb2cKNZlAWeUEakGPALXoQALKHuR9pQp7DQJ1QKbISJhYtMiCXM+rralVfV6vroSAA5AVpQI4Bt+hBAMge5n6kCXkOA3VCpchKeLg8FAAAAAAAAAAA8AJnWngiiqwGh8c1NFpQd/vZpykt9Lyr1wZCNTv3a5Yv04GjxxPtg6R6jx730/S6LFvcpJOnT6uzZUld9Qm51iGPfTqf3ketY3H9Hlz/fADwWaVz5Hz/bq7nmH/PxjbJrpMnT+vhp0Z0aLSgle15XfzsDi1evMj1sDBLoXBKPzg4okOjJ9TTvkQXr+xQPs9HnWiMOPbBSY3B959RCTrZA1FktWvvIW3buUeFiWjqhjAD/T1TB4/zPe/qtYFQzc79+Z1L9ZYr1uqmux9JrA+S6j163E/l6rL1irW6a/cB3ThwUU31CbnWIY99Op/eR61jcf0eXP98APBZpXPkfP9OUtnnXnZRt77+wyHm32nYJ2XXyZOndffDT+nmL535/fCWq9dr8yXPZuHCI4XCKd3zg4O6+Z5pdXrler3y4pUsXCB2ceyD6913JLFf8mnf58XloYwx51TzcD3euA0Oj0+FQZIKE5G27dyjweHxip539dpAqGbn/qpLVk0tWEjJ9EFSvUeP+6lcXW6771FddcmqmusTcq1DHvt0Pr2PWsfi+j24/vkA4LNK58j5/t1cz+09OML8Owv7pOx6+KmRqQULqVj7m7/0iB5+asTxyDDdDw6OTC1YSJN1uucR/eAgdUL84tgHJzUG339GpbxYtJA0JOlIFY9UGRotTIWhpDAR6fBYoaLnXb02EKrZuTdGifdBUr1Hj/tprrqUslhLfUKudchjn86n91HrWFy/B9c/HwB8VukcOd+/m+u5gyPMv7OxT8quQ3PUfmiU2vvk0OiJOep0wtGIkGZx7IOTGoPvP6NSvpwv9UJJX5a0RNI7JE24HU6yutvzyjfnZoQi35zTirZ8Rc+7em0gVHPlPsk+SKr36HE/zVUXa2uvT8i1Dnns0/n0Pmodi+v34PrnA4DPKp0jF/p35Z5b2bGU+XcW9knZtXKO2ne3U3uf9LQvmaNOSxyOCmkV1z44iTH4/jMq5cWZFtbaf5V0haRFks6z1n56vofj4caut7NFO7ZsUL65WI7S9cJ6O1sqet7VawOhmp37Lz/0pLZvXp9oHyTVe/S4n8rVZesVa/WVh5+suT4h1zrksU/n0/uodSyu34Prnw8APqt0jpzv3831XP/KdubfWdgnZdfFz+7QLVfP/P3wlqvX65JndzgeGaa7eGWHbnnlrDq9cr0uXkmdEL849sFJjcH3n1EpY61N/IfOxRhzraTbJP0Ha+0h1+OZz8aNG+3u3btje73SndkPjxW0ou3sO7Mv9Lyr10ZFnGzMuDOaNrNzv2b5Mh04ejzRPkiq9yr8OeQ0YaW6DI0WtGzxIk2cjnROy5K6chDyfF7B2J29kWpy6lMNah2L6/fg+ufXibkUISCnAat0jpzv3831nEfzrzf7fI+2CRJ28uRpPfzUiIZGC+puz+uSZ3fMvgm3NznNskLhlH5wcERDoyfU3b5EF6/s4CbcM7HPj1Ec++CkxuD7z5il7Iv7tmhhJF0iab+19ueOhzOvtDYgGoKdBEJATuE7fjFECJhLEQJyCt+xz0cIyClCwD4fISibU6+WH21xBeUh1+MAAAAAAAAAAADJ82rRYjpjzBpJL5G0UtKnJK2W9ANrbfK3KwcAAAAAAAAAAA3n3aKFMSYn6VZJb1TxxtxW0tcl/Ymk840xV1hrn3Q4RAAAAAAAAAAA0AA51wMo492SfkfSb0vq1pnrWt2g4iLLn7oZFgAAAAAAAAAAaCQfFy1+V9IfWmv/l6Sflb5orX1Y0rskvczVwAAAAAAAAAAAQOP4uGjRKenHczx3RFJ7gmMBAAAAAAAAAAAJ8XHR4mFJb5jjuV+T9IMExwIAAAAAAAAAABLi3Y24VbwE1NeMMedJ+qqKN+K+2hizTdJrJV3tcnAAAAAAAAAAAKAxvDvTwlr7DUkDkhZLep+KN+J+l6R+Sb9mrf1qpa9ljLnSGPN9Y8wzxpj9xpj3GmMWTT5njDF/ZIw5YIw5boz5hjFmXQPeEgAAAAAAAAAAqIB3ixbGmMskfdta+yJJbZLOk9RurX2+tfbLVbzOL0j635J+KOkVkm6XdKOkmyb/yc2T//uDKp7B0SHpXmNMR1zvBQAAAAAAAAAAVM7Hy0N9UdLbJf2ttfYZSc/U+Drvl/R1a+1vT/7/+4wxnZJeYozZIekGSe+x1t4mScaY+yXtl3StpB11jL8hoshqcHhcQ6MFdbfn1dvZolzOuB4WRG18kZY6pOV9ZEWo9Qp13L4IefuFPHYAmM2nOc2nsSA+1DW7qH0YTp2KtPfgiA6OFLSyY6n6V7arqcm7v8+Gh+jxZNSznX1ctDgx+aiZMaZL0i9I2jz969bad0w+/1JJrZLumfbcUWPMt1S8NJVXixZRZLVr7yFt27lHhYlI+eacdmzZoIH+HhrKMWrjh7TUIS3vIytCrVeo4/ZFyNsv5LEDwGw+zWk+jQXxoa7ZRe3DcOpUpLsfelI33f3IVJ22b16vzZeuYuEC86LHk1Hvdvaxiz8s6a+MMbcaY95ojHnV7EcFr3GxivfCGDfGfNkYUzDGHDbGvMcYk5P0nMl/99NZ37dv2nPeGBwenyqwJBUmIm3buUeDw+OORwZq44e01CEt7yMrQq1XqOP2RcjbL+SxA8BsPs1pPo0F8aGu2UXtw7D34MjUgoVUrNNNdz+ivQdHHI8MvqPHk1HvdvZx0eIvJLVLeoukj0n6/KzH31fwGl2T//2MpB9J+i+Tr3WTpLdNvv4Ja+3JWd83NvlcWcaY64wxu40xu48cOVLp+6nb0GhhqsAlhYlIh8cKiY0B5flWG1cZdc23OtQqLe9jIWnJaaj1CnXcSZsrpyFvv5DHjrOlZS5FujUypz7NaT6NBdVL4z4f9fGx9uz3z3ZwpHydDo3Qoy6ElFEfezyN6t3OPi5aXLDAo6+C12ie/O8/WmvfZq39prX2PZI+ruLCRU6SLfN9RlJU5uuSJGvtndbajdbajV1dXXP9s9h1t+eVb55ZqnxzTiva8omNAeX5VhtXGXXNtzrUKi3vYyFpyWmo9Qp13EmbK6chb7+Qx46zpWUuRbo1Mqc+zWk+jQXVS+M+H/Xxsfbs98+2smNp2Tr1dNCjLoSUUR97PI3q3c7eLVpYa/dba/dLOiCpRdJKSYtLX598biHHJv+7a9bXv6HivSx+LmmJMaZ51vOtkpycRxZFVvuOHNN3f/q09h05pig6s6bS29miHVs2TBW6dA2w3s4WF0PFNNTGD77VYb5+no9v7wPzS7JetWaqHHJWn1q3X5w1rBW1B5AmPs1p5cZy++ueL2vldN5HfXzKGJLV29mi21/3fG298kK9+YoL9dYrL9Ttr3s+tfdM/8p2/fmrL5lRpz9/9SXqX9nhemjwnMv53YffC5NS73b28UbcMsb8rqT36cxlnmSMOSzpPdbaOyp4iccm/7t41tdLixQTKp5VcYGkn0x7vk/Sj2sZcz0WujFJLmc00N+jdVs36fBYQSvauKu9L6iNH3yqQz03GvLpfWBhSdUr7puEkbP61LL9fLnRG7UHkCY+zWmzx9LTnte/HRzTKz5yPzf4DJhPGUPyTp6yuvPb+2b0MPySyxnlTG5GnT70mg30KBbkan735ffCpNS7nb0708IY8xuSPiHpPkm/JulySa+S9H8kfcwY89oKXubfJD0p6TWzvv4KSU9J+pykgqTN037uckm/JOneut5ADSq5MUkuZ9TX1arL+s5VX1drKsMcKmrjB1/qUPeNhjx5H6hMEvVqxE3CyFl9qt1+Pt3ojdoDSBOf5rTpY4msvJn3UR+fMobk+HTshrkNDo/rD/5+Zp3+4O+pEyrjYn7P4txSz3b2btFC0h9K+ri19nXW2nustd+31n7JWvsbKt6T4u0LvYC1NpL0TkmvNMb8pTHmSmPMn0p6g6RbrLWjkj4iabsx5gZjzCtVvJTUqIoLJoniBjBAetDPiBuZCh81BIBsYd4HwkYPh4E6ITRktjo+LlqslfTFOZ67W9K6Sl7EWvsZSa+T9GJJX5X0aklvnHZ5qXdK2iHpBkmfVfFeFr9irU38nhbcAAZID/oZcSNT4aOGAJAtzPtA2OjhMFAnhIbMVsfHRYv9ki6e47lLJA1X+kLW2r+z1l5src1ba9daa++c9twpa+07rLU91tpWa+3LrLU/qnPsNeEGX0B60M+IG5kKHzUEgGxh3gfCRg+HgTohNGS2Oj7eiPtTkm4xxoxJ+ry19ufGmGepeH+K90i63d3QGoMbfAHpQT8jbmQqfNQQALKFeR8IGz0cBuqE0JDZ6vi4aPFBSZdKulPSHcaYUyqO00j6gqSbHY6tYUo3JunranU9FAB1op8RNzIVPmoIANnCvA+EjR4OA3VCaMhs5bxbtLDWnpL0G8aYP5H0i5KWS/qZpO9Ya3/gdHAAAAAAAAAAAKBhvFu0kCRjzOWSftFa+/7J/79B0o3GmA9Zax90OjgAAAAAAAAAANAQ3t2I2xhztaRvSXrZtC9bSWslPWCM+WUHwwIAAAAAAAAAAA3m3aKFijfb/oS19orSF6y1D1lrXyjp05Le72pgAAAAAAAAAACgcXxctHiOpJ1zPLdT0voExwIAAAAAAAAAABLi46LFQUmXzfHcf5T0dIJjAQAAAAAAAAAACfHxRtx/LelmY4yR9BVJhyV1SbpK0k3i8lAAAAAAAAAAAKSSj4sW75fUI+m9kv542tdPS/q4pO0uBgUAAAAAAAAAABrLu0ULa20kaasx5t2SXijpHEkXSvqhpHuttdbl+AAAAAAAAAAAQGN4d08LY8waY8z/lbTVWrtLUrukd0v6nKSfGGOe73SAAAAAAAAAAACgIbxbtJD0QUndku4zxiyW9D5JX5Z0gaR/lvTnDscGAAAAAAAAAAAaxMdFiyslvc1ae7+kKyQ9S9Kt1toDkv5CxUtGAQAAAAAAAACAlPFx0aJZ0s8m//crJI1Jun/acyddDAoAAAAAAAAAADSWdzfilvSgpN8zxhQkvVbS16y1p4wxnZJulLTb6egAAAAAAAAAAEBD+Lho8XZJX5X0OhXPuLhl8uv/NvnfAReDAgAAAAAAAAAAjeXdooW19vvGmNWS+iX9yFp7bPKp10v6Z2vtUXejAwAAAAAAAAAAjeLdooUkWWuf0azLQFlr/9HRcAAAAAAAAAAAQAJ8vBE3AAAAAAAAAADIIBYtAAAAAAAAAACAF1i0AAAAAAAAAAAAXmDRAgAAAAAAAAAAeIFFCwAAAAAAAAAA4AUWLQAAAAAAAAAAgBdYtAAAAAAAAAAAAF5ocj2ArIgiq8HhcQ2NFtTdnldvZ4tyOeN6WADmQd+i0cgYcAb9ACAEzFXZQr0Bv9GjSLOs55tFiwREkdWuvYe0beceFSYi5Ztz2rFlgwb6ezIVNiAk9C0ajYwBZ9APAELAXJUt1BvwGz2KNCPfXB4qEYPD41Mhk6TCRKRtO/docHjc8cgAzIW+RaORMeAM+gFACJirsoV6A36jR5Fm5JtFi0QMjRamQlZSmIh0eKzgaEQAFkLfotHIGHAG/QAgBMxV2UK9Ab/Ro0gz8s2iRSK62/PKN8/c1PnmnFa05R2NCMBC6Fs0GhkDzqAfAISAuSpbqDfgN3oUaUa+uadFIno7W7Rjy4azrkPW29niemiSuLELUE6SfUsPZpPv+4bpyGj4fK9hSP0AIGz1zIfMVdnS29mi21/3fD38xIgiKy0y0sXndVBvwBP0KEJRy7EHxxwsWiQilzMa6O/Ruq2bdHisoBVt/nxYwI1dgPKS6lt6MLt83jdMR0bDF0INQ+kHAGGrdz5krsqek6es7vz2vhl5AeAPehS+q/XYg2OOFF8eyhjTaYyxZR6fn3zeGGP+yBhzwBhz3BjzDWPMukaNJ5cz6utq1WV956qvq9WbkHFjF2BuSfQtPZhtvu4bpiOj4QulhiH0A4CwxTEfMldlRyj7TyCr6FGEoJ6cZv2YI7WLFpIunfzvr0p60bTHH05+/WZJN0n6oKTXSuqQdK8xpiPhcTrFjV0At+hB+I6Mho8aAkAR8yGqQV4Av9GjCAE5rV2aLw91iaQha+3XZz9hjGmTdIOk91hrb5v82v2S9ku6VtKOJAcqubvWdOnGLtMbKGs3dgHiUksf04OoFPsJ1KqeGvp+LwxgPqtWr9FTTzwe62sual6i0xMnYn3NZ5+3Wk8+fiDW10R5lc6HzH2QOAbKOuYB/3W353V+51JddckqmcnSfPmhJ+nRFElDH7IvqV3aFy0enuO5yyS1Srqn9AVr7VFjzLckDSjhRQuX15rmxi5APGrtY3oQlWA/gXrUWsMQ7oUBzOepJx7XNXc8EOtr3nX95Q15TSSjkvmQuQ8lHANlF/NAGNYsX6a3XLFWN939yFSdtm9erzXLl7keGmKQlj5kX1K7tC9aFIwxD0h6gaSnJd0m6c8lPWfy3/x01vfsk3R1YiOcNNf1zdZt3aS+rtaG/mxu7ALEo9Y+pgdRCfYTqEetNXSZOwBohErmQ+Y+lHAMlF3MA2E4cPT41IKFVKzTTXc/ohesWU6dUiAtfci+pHapXLQwxuQkPU/SuIqXgTog6eWS/lRSXtKEpBPW2pOzvnVMUvs8r3udpOskac2aNbGNd77rmyXRiKUbu4TU9CivURnFwurp46z1IDmtHvuJ5KUtp7XU0HXuML+0ZRTp5GNOF5oPmfuyZ76cZvEYCH7OAz7Op675WKcsizujaaov+5LapPVG3EbSVZJeZK39tLX2m9bat0m6U9KNk8/bOb4vKvN1SZK19k5r7UZr7caurq7YBlu6vtl0XN8MtWhURrEw+rhy5LR65Ct55JTc+Y6MIgQh5pS5L3tCzCkay8d5gJyezcc6ZVncGaW+SOWihbX2tLX2PmvtY7Oe2iVpmYpnYCwxxjTPer5V0kgSY5yudH2zUjPOdW3VfUeO6bs/fVr7jhxTFJVbcwHmR44ap5I+xsLIaHnkCy6Qu7MxRwHpV+vcx/wApAfHQGGgTumWVH3Zf/srrZeHeraKZ1r8g7X2yLSnlk7+96iKZ1VcIOkn057vk/TjRAY5zULXN0vLzWfgFjlqLK5TWD8yOjfyBRfI3UzMUUA21DL3MT8A6bO4yei6X+xTZKWcKf5/+Ic6pVcSv4uw//ZbKhctJC2RdIekFkkfnvb1X1dxkeKLk89vlvRnkmSMWS7plyS9N8mBlsx3fbO03HwGbpGjxuM6hfUho/MjX3CB3J3BHAVkR7VzH/MDkC6Dw+N682cfnHE9/XxzTl+jp71CndKv0b+LsP/2W1ovD/Xvkv5O0h8bY95qjHmZMeavVFy0eJu19pikj0jaboy5wRjzShUvHTUq6RPOBj6H+W4+A1SKHMF3ZBSAz5ijAMyF+QFIF3o6DNQJ9SJDfkvrmRaSdK2kd0n6H5JWSvqhpF+31t4z+fw7Vbzp9g0q3sviAUlvsNYmfk+LhZRuPjN79Zibz6Aa5Ai+I6MAfMYcBWAuzA9AutDTYaBOqBcZ8lsqz7SQJGvtM9bad1prL7DW5q21z7fW/sO0509Za99hre2x1rZaa19mrf2RyzHPhZsLIQ7kCL4jowB8xhwFYC7MD0C60NNhoE6oFxnyW5rPtEgNboSJOJAj+I6MAvAZcxSAuTA/AOlCT4eBOqFeZMhvLFoEghthIg7kCL4jowB8FuIctWr1Gj31xOOxvuazz1utJx8/EOtrZlquScbE+8sxNUpeiPMDgLnR02GgTqgXGfIXixYAAABASj31xOO65o4HYn3Nu66/PNbXy7zoFDUCAAAApmHRIiWiyGpweFxDowV1t3M6E7KHHkCSyBtmIxMA4BbzMIA4MaeEgTqhHuTHbyxapEAUWe3ae0jbdu5RYSKaunHMQH8PzYZMoAeQJPKG2cgEALjFPAwgTswpYaBOqAf58V/O9QBQv8Hh8akmk6TCRKRtO/docHjc8ciAZNADSBJ5w2xkAgDcYh4GECfmlDBQJ9SD/PiPRYsUGBotTDVZSWEi0uGxgqMRAcmiB5Ak8obZyAQAuMU8DCBOzClhoE6oB/nxH4sWKdDdnle+eWYp8805rWjLOxoRkCx6AEkib5iNTACAW8zDAOLEnBIG6oR6kB//sWiRAr2dLdqxZcNUs5Wuw9bb2eJ4ZEAy6AEkibxhNjKBzMk1yRgT62PV6jWu3xUCxjwMIE7MKWGgTqgH+fEfN+JOgVzOaKC/R+u2btLhsYJWtHHHe2QLPYAkkTfMRiaQOdEpXXPHA7G+5F3XXx7r6yFbmIcBxIk5JQzUCfUgP/5j0SIlcjmjvq5W9XW1uh4K4AQ9gCSRN8xGJgDALeZhAHFiTgkDdUI9yI/fuDwUAAAAAAAAAADwAosWAAAAAAAAAADACyxaAAAAAAAAAAAAL7BoAQAAAAAAAAAAvMCiBQAAAAAAAAAA8AKLFgAAAAAAAAAAwAtNrgeQFlFkNTg8rqHRgrrb8+rtbFEuZxL7fgDVqbXn6FXMllQmyB7qQX6K2A6AP+LoR3oajUbGsovah+HUqUh7D47o4EhBKzuWqn9lu5qa+PtsH2Wxp7L4nuPEokUMoshq195D2rZzjwoTkfLNOe3YskED/T0Vfwhaz/cDqE6tPUevYrakMkH2UA/yU8R2APwRRz/S02g0MpZd1D4Mp05FuvuhJ3XT3Y9M1Wn75vXafOkqFi48k8WeyuJ7jhtdHIPB4fGpEEpSYSLStp17NDg8nsj3A6hOrT1Hr2K2pDJB9lAP8lPEdgD8EUc/0tNoNDKWXdQ+DHsPjkwtWEjFOt109yPae3DE8cgwWxZ7KovvOW4sWsRgaLQwFcKSwkSkw2OFRL4fQHVq7Tl6FbMllQmyh3qQnyK2A+CPOPqRnkajkbHsovZhODhSvk6HRqiTb7LYU1l8z3Fj0SIG3e155Ztnbsp8c04r2vKJfD+A6tTac/QqZksqE2QP9SA/RWwHz+WaZIyJ9QF/xdGP9DQajYxlF7UPw8qOpWXr1NNBnXyTxZ7K4nuOG/e0iEFvZ4t2bNlw1nXKejtbEvl+ANWptefoVcyWVCbIHupBforYDp6LTumaOx6I9SXvuv7yWF8P8YmjH+lpNBoZyy5qH4b+le3avnn9Wfe06F/Z4XpomCWLPZXF9xw3Fi1ikMsZDfT3aN3WTTo8VtCKturuCF/v9wOoTq09R69itqQyQfZQD/JTxHYA/BFHP9LTaDQyll3UPgxNTTltvnSV1q5o1aGRgno68upf2cFNuD2UxZ7K4nuOG4sWMcnljPq6WtXX1erk+wFUp9aeo1cxW1KZIHuoB/kpYjsA/oijH+lpNBoZyy5qH4amppwuXb1cl652PRIsJIs9lcX3HCeWHwEAAAAAAAAAgBdYtAAAAAAAAAAAAF4w1lrXYwiSMeaIpP0NeOlzJT3dgNfNAl+33dPW2oGkf2iDMurrNm6ULL3fNOU0FFnKVzXm2i5OMiqlOqdpzqCr95bFudTnHPk8NomcuuZ7PkLQqG3o4z6fvGRXSMemWc5plt+75FlOY9rnZ72m9Qht25XNKYsWnjHG7LbWbnQ9jhCx7Rova9s4a+8XySJf5bFdkpPmbZ3m9+Ybn7e1z2OT/B9f2rH965elbZil94qZQqp9SGONW5bfu5TO95/G95SUtGw7Lg8FAAAAAAAAAAC8wKIFAAAAAAAAAADwAosW/rnT9QACxrZrvKxt46y9XySLfJXHdklOmrd1mt+bb3ze1j6PTfJ/fGnH9q9flrZhlt4rZgqp9iGNNW5Zfu9SOt9/Gt9TUlKx7binBQAAAAAAAAAA8AJnWgAAAAAAAAAAAC+waAEAAAAAAAAAALzAogUAAAAAAAAAAPACixYAAAAAAAAAAMALLFoAAAAAAAAAAAAvsGhRo4GBASuJB49KHk6QUR5VPpwgpzyqeDhDTnlU8XCCjPKo8uEEOeVRxcMZcsqjiocz5JRHFQ8nyCiPKh9lsWhRo6efftr1EIB5kVGEgJwiBOQUviOjCAE5RQjIKUJATuE7Moo4pHbRwhizyBjzdmPMY8aYY8aY7xtjrpj2vDHG/JEx5oAx5rgx5hvGmHUuxwwAAAAAAAAAQJaldtFC0tskvU/SX0vaLOmnknYZY54/+fzNkm6S9EFJr5XUIeleY0xH8kMFAAAAAAAAAABNrgfQQG+Q9Flr7fskyRjzTUkvlnStMeYPJd0g6T3W2tsmn79f0n5J10ra4WbItYsiq8HhcQ2NFtTdnldvZ4tyOeN6WMBZyCpcIXvwCXkEsoN+B4DwMHeHgTqhhCykT5oXLZZIGi39H2vtaWPMiKRzJF0mqVXSPdOeP2qM+ZakAQW2aBFFVrv2HtK2nXtUmIiUb85px5YNGujvoUHhFbIKV8gefEIegeyg3wEgPMzdYaBOKCEL6ZTmy0N9VNJvGWOuNMZ0GGPeKqlf0uckPWfy3/x01vfsm/ZcMAaHx6caU5IKE5G27dyjweFxxyMDZiKrcIXswSfkEcgO+h0AwsPcHQbqhBKykE5pXrT4S0nfkfRPkn4u6S8kvctae4+kdkknrLUnZ33P2ORzZRljrjPG7DbG7D5y5EhDBl2LodHCVGOWFCYiHR4rOBoRXPE1oyVkFZKbnJI9VKuROSWPiIPv+3wUZb3fySlCQE4xm49zNzk9m491yjKXGSUL6ZTKRQtjjJH0jypeBuq/S3qJpD+R9G5jzJskGUm23LdKisp8XZJkrb3TWrvRWruxq6sr/oHXqLs9r3zzzFLmm3Na0ZZ3NCK44mtGS8gqJDc5JXuoViNzSh4RB9/3+SjKer+TU4SAnGI2H+ducno2H+uUZS4zShbSKZWLFpJ+QcWbbr/RWvuX1tr/Y629ScV7VfyZpHFJS4wxzbO+r1XSSLJDrV9vZ4t2bNkw1aCla7f1drY4HhkwE1mFK2QPPiGPQHbQ7wAQHubuMFAnlJCFdErrjbhXT/73e7O+/h1JN6p4loWRdIGkn0x7vk/Sjxs+upjlckYD/T1at3WTDo8VtKItr97OFm42A++QVbhC9uAT8ghkB/0OAOFh7g4DdUIJWUintC5alBYifkHFG2+XvFDSKUlflPQBSZtVPPNCxpjlkn5J0nsTG2WMcjmjvq5W9XW1uh4KMC+yClfIHnxCHoHsoN8BIDzM3WGgTighC+mTykULa+2/GGO+KuljxphzJP1Q0i+reJbFrdbaJ4wxH5G03RgTqbjI8UeSRiV9wtGwAQAAAAAAAADItFQuWkx6jaTtKi5GnCPpUUlbJd0x+fw7Vbzp9g0q3sviAUlvsNYGd08LAAAAAAAAAADSILWLFtbaZyT9weSj3POnJL1j8gEAAAAAAAAAABxL7aIFzogiq8HhcQ2NFtTdfvbNaBZ6HtlCHhqD7ZostvcZbAu4kNbcpfV9oTpx54BcAYB/Tp2KtPfgiA6OFLSyY6n6V7arqSnneliYhTqhUi6OtzjGqw+LFikXRVa79h7Stp17VJiIlG/OaceWDRro71EuZxZ8HtlCHhqD7ZostvcZbAu4kNbcpfV9oTpx54BcAYB/Tp2KdPdDT+qmux+Zmpu3b16vzZeu4gNxj1AnVMrF8RbHePWji1NucHh8qkEkqTARadvOPRocHq/oeWQLeWgMtmuy2N5nsC3gQlpzl9b3herEnQNyBQD+2XtwZOqDcKk4N9909yPae5BboPqEOqFSLo63OMarH4sWKTc0WphqkJLCRKTDY4WKnke2kIfGYLsmi+19BtsCLqQ1d2l9X6hO3DkgVwDgn4Mj5efmQyPMzT6hTqiUi+MtjvHqx+WhEuLqOmbd7Xnlm3MzGiXfnNOKtnxFzyNbspiHJHozi9vVpSS3t+/XqCR72eQ6l2nNXVrfF6pTSw7m60lyBQD+WdmxVOd3LtVVl6ySmTyE+vJDT6qng7nZJ9QJlXJxvFXJz3T9e5vvONMiAaXrmL38tvv1G3/1fb38tvu1a+8hRZFt+M/u7WzRji0blG8ulrp0DbXezpaKnke2ZC0PSfVm1rara0ltb5dze6XIXvb4kMu05i6t7wvVqTYHC/UkuQIA/1zU3aY3vWStPvmdfbr9vsf0ifv36U0vWauLuttdDw3TUCdUysXx1kI/04ff23xnrGVj1GLjxo129+7dFf3bfUeO6eW33X/W6trXtm5SX1dro4Y4pbRyd3isoBVtZ6/cLfQ86uZkY1aT0emylIckezOA7RpUTheSxPZ2PbdXKoDsVcrZoBuV00bwJZcpyt0MFbyvVM2lKK+afFfSkw76hZzCd+zz4VSFx1Pk1DFfjns9xz5/kovfT+b7meR3hrKF4PJQCZjvOmZJBDGXM+rrap3zZy30PLIlS3lIsjeztF19kMT2dj23V4rsZYsvuUxr7tL6vlCdanJQSU+SKwDwiy/HU5gfdUI1XBxvzfczye/CuDxUAkrXMZuOa9UC7tGbqAf5gY/IJeAXehIAwsPcHQbqhJCR34WxaJEArlUL+IneRD3ID3xELgG/0JMAEB7m7jBQJ4SM/C6My0MlIJczGujv0bqtm1J3bWcgZPQm6kF+4CNyCfiFngSA8DB3h4E6IWTkd2EsWiSEa9UCfqI3UQ/yAx+RS8Av9CQAhIe5OwzUCSEjv/Pj8lAAAAAAAAAAAMALLFoAAAAAAAAAAAAvsGgBAAAAAAAAAAC8wKIFAAAAAAAAAADwAosWAAAAAAAAAADACyxaAAAAAAAAAAAAL7BoAQAAAAAAAAAAvNDkegAoOnUq0t6DIzo4UtDKjqXqX9mupibWlIBqRZHV4PC4hkYL6m7Pq7ezRbmcadj3IZviyAuZg4+iyOrAz8Y1NHpC4ydP6fxzWnTBuWQT2ZL0/Mz+AAD8w2c0YaBOiNt8x2UcsyWLRQsPnDoV6e6HntRNdz+iwkSkfHNO2zev1+ZLVzHZAlWIIqtdew9p2849U720Y8sGDfT3zLsjqfX7kE1x5IXMwUdRZHXfj4f06NAx3Xrvo2QTmZT0/Mz+AAD8w2c0YaBOiNt8x2WSOGZLGF3sgb0HR6YmWUkqTES66e5HtPfgiOORAWEZHB6f2oFIxV7atnOPBofHG/J9yKY48kLm4KPB4XE9/MTI1IKFRDaRPUnPz+wPAMA/fEYTBuqEuM13XMYxW/JYtPDAwZHCVOhLChORDo0UHI0ICNPQaPleOjw2fy/V+n3IpjjyQubgo6HRgiIrsolMS3p+Zn8AAP7hM5owUCfEbb7jMo7ZkseihQdWdixVvnlmKfLNOfV05Ct+jSiy2nfkmL7706e178gxRZGNe5iA97rb82V7aUXb/L1U6/e5Qr+7FUdeXGWO7PjB1zp0t+e1yCio+RCIWxzzczU9HtoxCABkQRyf0aDxqBPiNtdx2dLmRcoZwzFbwli08ED/ynZt37x+Kvyl6/D1r+yo6PtL11x7+W336zf+6vt6+W33a9feQ958CAIkpbezRTu2bJjRSzu2bFBvZ0tDvs8F+t29OPLiInNkxw8+16G3s0UXn9eht165Noj5EGiEeufnans8pGMQAMiKi7rbdMvVMz+jueXq9bqou93xyDAddULcyh2Xbd+8Xls/96D+x117+D0pYcZa978kN4Ix5pclfXOef9Ir6YCkd0q6XtK5kv6vpLdYa3+00Otv3LjR7t69u+5xlpw6FWnvwREdGimopyOv/pUdFd84aN+RY3r5bffPOE0p35zT17ZuUl9Xa2xjRM2c3JEn7oyGIoqsBofHdXisoBVtefV2tlR0U6Ravy9pDex3clqFOPKSdOZSsK9w1pBx5tT3OkSR1YGfjWto9ISOnzylNee06IJz/ZwPPcVcmgL1zM+19LiDYxByCt+lYp+PcO07ckxv//wevf7yPj1z8pSWLm7SZx7Ypz979Ybpczk5dazCOmUd+/wqTT8uW9q8SFs/96D2Dz8jSVrZkddrNp6n569+ls7vbPH2c6MAld2ITUmPIkH/KulFs76Wl/T5yecel3SzpHdIulHSoKSbJN1rjHmetTbRO/c0NeV06erlunR19d8733XVmKiRNbmcUV9Xa9XZr/X7kka/+yGOvCSdObLjB9/rkMsZ9Z7bqt5z3Y8FcKWe+bmWHg/lGAQAsmJotKDd+0e0e/+DM77uy/EaiqgTGmH6cdl3f/r01IKFVLyPym33PqbPXfdCMpaA1C5aWGtHJX1v+teMMX8hyUr6TUktkm6Q9B5r7W2Tz98vab+kayXtSHK8pZW8odGCutur+wur0jXXZv9FV6XXVavnZwNZ4FOP1NLvPo0fRS5qUu++otGyklOf6+BLDXwZB7LL5XF5vT8fAFC/7va8Np7fUfwL/hOntGxJkz79wD4vjtdwBnVCo9V6XOfyWC5Nx5GpXbSYzRjzPElvlvQma+0RY8xLJbVKuqf0b6y1R40x35I0oAQXLUrXvt22c48KE9HUddEG+nsqClbpmmuzv7+S66rV+7OBtPOtR6rtd9/GD3c1qWdf0WhZyqmvdfClBr6MA9nl8rg8jp8PAKjfeR1LteU/na+3f/6hqbn4lqvX67yOpa6HhmmoExqtluM6l8dyaTuOTO09LWYzxvyDpOdKWm+tjYwxb5J0u6Ql1tqT0/7drZKuttb2zvd6vl3futZr4fp+be2U4BqCAfOxR6rp9yrGT04T4jJTvt67pcJtkprrBvtYB1/mOl/GUQfm0sC5PC6P6+dXgJzCd6nZ5yNMDz1+VNfc+b2z5uK7rrtMl65eXvoSOXWswjplHfv8OlV7XOfy95mAf5fK3D0tphhjLpD0SknXWWtLlWuXdGL6gsWkscnnyr3OdZKuk6Q1a9ZUNYb5Ts+J4/rWtV4L1/dra6M69WS00UI9Rc3HHqmm330cf9Zz6rImvl43PWs5jasOcebVlxr4Mo4Q+DyXhiyJ4/JG/17gE3KKEJBTzHZwpKDlyxbrVS84T2by0OoL//KEDo0UaroPaRzI6dl8rFOWpTWj5Y7rfD2WS9txZCYWLST9nqSjkv522teMive3mM1Iisp8XdbaOyXdKRVXDSv94QudnuPy+tY+X1sb1as1o40W8ilqofeIj+PPek59rIlrPm4TX3NaEndefamBL+MIge8ZDVWjM+jz7wWNQE4RAnKK2c5bvlSvf9H5uvXeR6fm6rdeuVarlru77BA5PZuPdcqyrGTU52O5tB1H5lwPICGbJd1trT0x7WsjkpYYY5pn/dvWyediMzg8PhVmqbjKtW3nHg0Oj0s6c420fHOxHEle39rlz0Z2LNQDPgu9R0Iff5KSyik1ORvbpHpx59WXGvgyDmRXozPo8+8FAICifNOiqQ/CpeJcfeu9jyrftMjxyDAddYILPh/Lpe04MvVnWhhj1ki6SNINs556VMWzKi6Q9JNpX++T9OM4x7DQ6Tm5nNFAf4/Wbd2U+PWtXf5sZEfIp6iF3iOhjz9JSeWUmpyNbVK9uPPqSw18GQeyq9EZ9Pn3AgBA0ZFjJ8rO1U+Pn9CFanM0KsxGneCCz8dyaTuOTP2ihaT/PPnf78/6+gOSCiqehfFnkmSMWS7plyS9N84BVHJ6TiOvM77QNa99vcY50sPHU9SquRZ86D0S+viTkmROp9ck1Pu9xC0tOU2qno3Iqy818GUcgG3AhQ1c/14AoDocp2WTj7+/4mzUCS64PpbL0me8Wbg81HpJT1trh6d/0Vp7TNJHJG03xtxgjHmlpF2SRiV9Is4BuDw9p3SttZffdr9+46++r5ffdr927T2kKErt5eXgId9OUaMvUI6LnJLFdEmynr7Nq0BaNLqP6V0gHBynZRdzdRjWLF+m7ZvXz6jT9s3rtWb5MscjQ5rxGW9yjG3EnxB5xBjzMUkvtdauLfNck6Ttkn5bxXtZPCBpq7X2Rwu97saNG+3u3bsrHkdpJSzp03P2HTmml992/1krgF/buikVq26BcPKnONVmtNFc9UA59EVZ5FTJ55QsVsXZnzVWmtOk6+nTvIopzKWBS6KPPehdcgrfebHP5zgt2yqYq73IaZbtO3JMv/Opf9ZVl6ySMcUzJL/y8JP6n7/9n+nRM9jnNwCf8cau7MZL/eWhrLX/fZ7nTkl6x+SjoVydnhPyvQSQLj6dokZfYC5J55QspkvS9fRpXgXSIok+pneBMHCclm3M1f4bGi1o//Az+ug3H5vxdXoUjcZnvMlI/aJF1nGNP4SuEdeRpS8wWzU5izOTZDFdfKjn7HyuWb5MB44e51rcQIUa0cdJXhOf6+8D8fFhvw5gbvQoXB33uPq5Wcs8ixYpd17HUt1y9Xrd/KVHVJiIlG/O6Zar1+u8jqWuhwYsqHS9vm0790zld8eWDRro76lrh1C69uVNd5/pC659mV3V5CzuTJauhzn79bhebphc17NcPrdvXq+P3Peo9g8/E9scCqRZ3H3cqGMZ1z8LyAJ+lwb8Ro9mm6vjHpfHW65/30waixYp98OhUX30m4/q2hf3TV3j76PffFTP7W7VpauXux4eMK/B4fGpyVgqnva2beceravzen0Hjh7XR+6b2Rcfue9RvWDN8lSeUof5VZOzuDOZyxkN9Pdo3dZN3JcgBVzXs1w+b7r7EV374j599JuPxTaHAmkWdx836ljG9c8CsoDfpQG/0aPZ5uq4x+XxluvfN5PGokXKHRwpf42/QyMFXbra0aCACjXqen1c+xLTVZOzRmSS6+Wmi8t6zpVPY2b+f+Y6YH5x9nGS1x7O2nWOgUbjd2nAb/Rotrk67nF9vJWlzw9yrgeAxlrZsVT55pllzjfn1NORzuudIV1K1+ubLo7r9TXqdRGmavJAduCzufJp7cz/T16B5CS532AfBcSL36UBv9Gj2ebquIfjreSwaJFy/SvbtX3z+qmGKl3fun9lh+ORAQsrXa9ven7juF5fo14XYaomD2QHPiuXz+2b1+srDz859f/JK5CsJPcb7KOAePG7NOA3ejTbXB33cLyVHGOn//mdY8aYZZLOlzRorX1mjufXWWv/NfHBzbJx40a7e/du18OoyKlTkfYeHNGhkYJ6OvLqX9mhpibWqxLk5OJyIWV0PlFkNTg8Hvv1+hr1ugHLdE6ryQPZccbZRvYlp5WYnc81y5fpwNHj5DU5mZ5LUV6S+40KfxY5he+82efzuzTm4U1Os4weXVCq9/mufjfnM4HYld14XtzTwhjTLOnDkt6o4kALxpiPSrrJWnty2j+9WNIDkhYlP0q3Sg0xNFpQd3t1DdHUlNOlq5dzTT8EqVHX6/PhOoD19DXiVU0efMjOXMgUpueTPAC1ibt3ktxv+LyPAkLE79LZxXFUGHI5o7Z8s46fPK22fDM1yhhXxz1pP97yZf7zYtFC0jslvUHSOyT9WNIrJf2+pBcaY/6rtXbU5eBciyKrXXsPTd2dvnTq0UB/DxMyECj6GnEjU5iOPAC1oXcAAOwLwkCdgPj51Fe+nDP1m5LeZa39oLX2y9ba35N0laQXSPqqMWap2+G5NTg8PhUWqXhX+m0792hweNzxyADUir5G3MgUpiMPQG3oHQAA+4IwUCcgfj71lS+LFs+W9PD0L1hr/1HS1ZI2SvqiMcaXs0ISNzRamApLSWEi0uGxgqMRAagXfY24kSlMRx6A2tA7AAD2BWGgTkD8fOorXxYtHpP0stlftNbeJ+m3J5/7X5IWJzssP3S356fuSl+Sb85pRVve0YgA1Iu+RtzIFKYjD0Bt6B0AAPuCMFAnIH4+9ZUvixYflvQ2Y8ynjDFXTn/CWnuXpDdJerWkz7oYnGu9nS3asWXDVGhK1xPr7WxxPDIAtaKvETcyhenIA1AbegcAwL4gDNQJiJ9PfeXFJZestZ82xhhJN0h6WtK9s57/uDHmkKSPuxifa7mc0UB/j9Zt3aTDYwWtaHN353YA8aCvETcyhenIA1AbegcAwL4gDNQJiJ9PfeXFooUkWWs/JelTk4sX5Z6/2xjzvyVdlujAPJHLGfV1taqvq9X1UADEhL5G3MgUpiMPQG3oHQAA+4IwUCcgfr70lTeLFiXWWitJxpg1kl4iaaWkT0laLekH1tpvuRsdAAAAAAAAAABoFO8WLYwxOUm3SnqjpEWSrKSvS/oTSecbY66w1j7pcIgAAAAAAAAAAKABfLkR93TvlvQ7kn5bUrek0uWiblBxkeVP3QwLAAAAAAAAebV+HAAA2NBJREFUAAA0ko+LFr8r6Q+ttf9L0s9KX7TWPizpXZJe5mpgAAAAAAAAAACgcXxctOiU9OM5njsiqT3BsQAAAAAAAAAAgIT4uGjxsKQ3zPHcr0n6QYJjAQAAAAAAAAAACfHuRtwqXgLqa8aY8yR9VcUbcV9tjNkm6bWSrnY5OAAAAAAAAAAA0BjenWlhrf2GpAFJiyW9T8Ubcb9LUr+kX7PWftXh8AAAAAAAAAAAQIN4d6aFMeYySd+21r7IGLNU0nJJo9baY46HBgAAAAAAAAAAGsi7My0kfVHSNZJkrX3GWvtUrQsWxpgrjTHfN8Y8Y4zZb4x5rzFm0eRzxhjzR8aYA8aY48aYbxhj1sX4PgAAAAAAAAAAQBV8XLQ4MfmoizHmFyT9b0k/lPQKSbdLulHSTZP/5ObJ//1BFe+V0SHpXmNMR70/GwAAAAAAAAAAVM+7y0NJ+rCkvzLGvFjFBYfDs/+BtfaLFbzO+yV93Vr725P//z5jTKeklxhjdki6QdJ7rLW3SZIx5n5J+yVdK2lH3e8CAAAAAAAAAABUxcdFi7+Y/O9b5njeSlo03wsYY7ok/YKkzTO+0dp3TD7/Ukmtku6Z9txRY8y3VLwJOIsWAAAAAAAAAAAkzMdFiwtieI2LJRlJ48aYL0t6qaRRSR+TdIuk50z+u5/O+r59kq6O4ecDAAAAAAAAAIAqeXdPC2vtfmvtfkkHJLVIWilpcenrk88tpGvyv5+R9CNJ/0XFBYubJL1NUrukE9bak7O+b2zyubKMMdcZY3YbY3YfOXKkqvcFJIGMIgTkFCEgp/AdGUUIyClCQE4RAnIK35FRxM27RQtJMsb8rqSDkn4g6f9K+pEx5qAx5voKX6J58r//aK19m7X2m9ba90j6uIoLFzkVLzN11o+WFM31otbaO621G621G7u6uub6Z4AzZBQhIKcIATmF78goQkBOEQJyihCQU/iOjCJu3i1aGGN+Q9InJN0n6dckXS7pVZL+j6SPGWNeW8HLHJv8765ZX/+Givey+LmkJcaY5lnPt0oaqWngAAAAAAAAAACgLj7e0+IPJX3cWvvfZ339S8aYn0l6u6TPLfAaj03+d/Gsr5cWKSZUPKviAkk/mfZ8n6QfVz1iAAAAAAAAAABQN+/OtJC0VtIX53jubknrKniNf5P0pKTXzPr6KyQ9peKiR0HS5tITxpjlkn5J0r1VjRYAAAAAAAAAAMTCxzMt9ku6WNI/lXnuEknDC72AtTYyxrxT0qeNMX8p6fOSfkXSGyT9v9baUWPMRyRtN8ZEKp5t8UeSRlW8NFXioshqcHhcQ6MFdbfn1dvZolzOuBgKgDrRz4gbmQofNQQah/4CAMSNfUsYqBNCQ2Yr5+Oixack3WKMGZP0eWvtz40xz1LxrIn3SLq9khex1n7GGDMh6Z2SfkfS45LeaK29c/KfvFPFm27foOK9LB6Q9AZrbeL3tIgiq117D2nbzj0qTETKN+e0Y8sGDfT3EFwgMPQz4kamwkcNgcahvwAAcWPfEgbqhNCQ2er4eHmoD0r6iqQ7JQ0bY06oeHbFHSreWPvmSl/IWvt31tqLrbV5a+3aaQsWstaesta+w1rbY61ttda+zFr7o5jfS0UGh8enAitJhYlI23bu0eDwuIvhAKgD/Yy4kanwUUOgcegvAEDc2LeEgTohNGS2Ot6daWGtPSXpN4wxfyLpFyUtl/QzSd+x1v7A6eAaZGi0MBXYksJEpMNjBfV1tUri9CGfhVSbkMZaLV/eWyX9jLn5UsdKJTFeMuWfautODdMjtDkqTr6+97n6a7+HYwUAhIFjtzBQJ9Rj+rHtssVNOnn6tDpbljT0uJHMVse7RQtJMsZcLukXrbXvn/z/GyTdaIz5kLX2QaeDa4Du9rzyzbkZwc0357SiLS+J04d8FlJtQhprtXx6bwv1M+bmUx0rkdR4yZRfaqk7NUyH0OaoOPn83ufqrwcf/7luu/cxr8YKAAjDitYlZfct57YscTgqzEadUKtyx7Zbr1iru3Yf0I0DFzXsuJHfC6vj3eWhjDFXS/qWpJdN+7KVtFbSA8aYX3YwrIbq7WzRji0blG8ulqP0y1VvZ4skTh/yWUi1CWms1fLpvS3Uz5ibT3WsRFLjJVN+qaXu1DAdQpuj4uTzey/XX2+9cq3+fvcTkvwaKwAgDM+cOq23Xrn2rH1L4dRpxyPDdNQJtSp3bHvbfY/qqktWNfS4kd8Lq+PjmRbvkfQJa+3/W/qCtfYhSS80xnxc0vslXeZobA2RyxkN9Pdo3dZNOjxW0Iq2maexc/qQv0KqTUhjrZZP722hfsbcfKpjJZIaL5nySy11p4bpENocFSef3/vs/jIy+h937dHBkcLUv/FlrACAMDxx9Bl95rv7de2L+2SMZK30me/uV9+5LVq/6lmuh4dJ1Am1muvY1pjGHjfye2F1fFy0eI6kbXM8t1PS/5PgWBKTyxn1dbWWbQpOH/JXSLUJaazV8u29zdfPmJtvdVxIkuMlU/6ote7UMHyhzVFx8v29T++vfUeO6ejxkzOe92msAAD/rexYqqPHT+qj33xs6mv55px6OtiX+IQ6oVZzHdta2/jjRn4vrJx3l4eSdFBzn0nxHyU9neBYvMDpQ/4KqTYhjbVaaX5vWRJaHUMbL+JB3bMry7UP6b2HNFYAgJ/6V7Zr++b1M/Yl2zevV//KDscjw3TUCbUqd7y49Yq1+srDT3Lc6BFjrXU9hhmMMe+U9C5JfyzpK5IOS+qSdJWkmyS931r7x+5GWLRx40a7e/fuxH5e6a72nD7knwpq46RQ5TKa5hyl+b0lxIuchlbH0MYbOGcbNvScIj4h7fPjFlLuQxqrI6nNKVLDm30+suvUqUh7D47o0EhBPR159a/sUFPTjL/7JaceqKBOWcc+fw6l48Wh0YKWLV6kidORzmlZwnGjG2U3uI+Xh3q/pB5J71Vx4aLktKSPS9ruYlCucfqQv0KqTUhjrVaa31uWhFbH0MaLeFD37Mpy7UN67yGNFQDgp6amnC5dvVyXrnY9EsyHOqFWHC/6z7tFC2ttJGmrMebdkl4o6RxJF0r6oaR7rW+nhlRo+gpedzt/8QWEgL5Fo5Ex4Az6IT2oJYC0YD4D/EaPIs2ynm/vFi2MMWsk/Z2kr1tr32uMeaOkd08+fdQY81Jr7YPuRli9KLLatfeQtu3co8JENHVt3YH+nkyFDQgJfYtGI2PAGfRDelBLAGnBfAb4jR5FmpFvP2/E/UFJ3ZLuM8YslvQ+SV+WdIGkf5b05w7HVpPB4fGpkElSYSLStp17NDg87nhkAOZC36LRyBhwBv2QHtQSQFownwF+o0eRZuTbz0WLKyW9zVp7v6QrJD1L0q3W2gOS/kLFS0YFZWi0MBWyksJEpMNjBUcjArAQ+haNRsaAM+iH9KCWANKC+QzwGz2KNCPffi5aNEv62eT/foWkMUn3T3vupItB1aO7Pa9888xNnW/OaUVb3tGIACyEvkWjkTHgDPohPaglgLRgPgP8Ro8izci3n4sWD0r6PWPMCyW9VtLXrLWnjDGdkm6UtNvp6GrQ29miHVs2TIWtdB2y3s4WxyMDMBf6Fo1GxoAz6If0oJaAe6tWr5ExJtbHqtVrXL+txDGfAX6jR5Fm5NvDG3FLerukr0p6nYpnXNwy+fV/m/zvgItB1SOXMxro79G6rZt0eKygFW3Zu+M7EBr6Fo1GxoAz6If0oJaAe0898biuueOBWF/zrusvj/X1QsB8BviNHkWakW8PFy2std83xqyW1C/pR9baY5NPvV7SP1trj7obXe1yOaO+rlb1dbWWfT6KrAaHxzU0WlB3e/aCCPhoob6djT5GtarJGPmCC0nmrto5F27Nlw1qCSAtmM+yi2PvsFjregRohKz3Ydb3Qd4tWkiStfYZzboMlLX2Hx0Np+GiyGrX3kNTd4UvnfIz0N+TqWYEQkYfo5HIF1wgd5gL2QAApBn7uTBQp3SjvvDxnhaZMzg8PtWEUvFu8Nt27tHg8LjjkQGoFH2MRiJfcIHcYS5kAwCQZuznwkCd0o36gkULDwyNFqaasKQwEenwWMHRiABUiz5GI5EvuEDuMBeyAQBIM/ZzYaBO6UZ9waKFB7rb81N3gy/JN+e0oi3vaEQAqkUfo5HIF1wgd5gL2QAApBn7uTBQp3SjvmDRwgO9nS3asWXDVDOWrtPW29nieGQAKkUfo5HIF1wgd5gL2QAApBn7uTBQp3SjvvDyRtxZk8sZDfT3aN3WTTo8VtCKtrx6O1u4sQwQEPoYjUS+4AK5w1zIBgAgzdjPhYE6pRv1BYsWnsjljPq6WtXX1ep6KABqRB+jkcgXXCB3mAvZAACkGfu5MFCndKO+2cbloQAAAAAAAAAAgBdYtAAAAAAAAAAAAF5I7aKFMabTGGPLPD4/+bwxxvyRMeaAMea4MeYbxph1rscNAAAAAAAAAEBWpfmeFpdO/vdXJY1O+/rw5H9vlvQOSTdKGpR0k6R7jTHPs9aOJDVIAAAAAAAAAABQlOZFi0skDVlrvz77CWNMm6QbJL3HWnvb5Nful7Rf0rWSdiQ5UNeiyGpweFxDowV1t+fV29miXM64HhaQGfQgfEdGw0cN0UjkC0BaMb8BfqNHEQJyWpu0L1o8PMdzl0lqlXRP6QvW2qPGmG9JGlCGFi2iyGrX3kPatnOPChOR8s057diyQQP9PTQQkAB6EL4jo+Gjhmgk8gUgrZjfAL/RowgBOa1dau9poeKixTJjzAPGmIIx5gljzNuNMUbScyb/zU9nfc++ac9lwuDw+FTjSFJhItK2nXs0ODzueGRANtCD8B0ZDR81RCORLwBpxfwG+I0eRQjIae1SuWhhjMlJep6k50q6Q9J/kfR3kv5U0rsktUs6Ya09Oetbxyafm+t1rzPG7DbG7D5y5EhDxp60odHCVOOUFCYiHR4rOBoR6pHGjKZdFnuQnIYlixmV0pXTrNYw7XzJKPnCfHzJKTCfuXLK/AafMJ+ejR71Cxktj5zWLpWLFpKMpKskvcha+2lr7TettW+TdKeKN942kuwc3xeV+bokyVp7p7V2o7V2Y1dXVyPGnbju9rzyzTNjkG/OaUVb3tGIUI80ZjTtstiD5DQsWcyolK6cZrWGaedLRskX5uNLToH5zJVT5jf4hPn0bPSoX8hoeeS0dqlctLDWnrbW3metfWzWU7skLZM0LmmJMaZ51vOtkkaSGKMvejtbtGPLhqkGKl1brbezxfHIgGygB+E7Mho+aohGIl8A0or5DfAbPYoQkNPapfJG3MaYZ6t4psU/WGunn5O0dPK/R1U8q+ICST+Z9nyfpB8nMkhP5HJGA/09Wrd1kw6PFbSijbvYA0miB+E7Mho+aohGIl8A0or5DfAbPYoQkNPapXLRQtISFe9l0SLpw9O+/usqLlJ8cfL5zZL+TJKMMcsl/ZKk9yY5UB/kckZ9Xa3q62p1PRQgk+hB+I6Mho8aopHIF4C0Yn4D/EaPIgTktDapXLSw1v67MebvJP2xMSaS9ENJr1Fx0WKztfaYMeYjkrZPPv8TSX8kaVTSJ1yNGwAAAAAAAACALEvlosWkayW9S9L/kLRSxYWLX7fW3jP5/DtVvOn2DSrey+IBSW+w1mbqnhYAAAAAAAAAAPgitYsW1tpnVFyYeOccz5+S9I7JBwAAAAAAAAAAcCy1ixZZE0VWg8PjGhotqLudm7oge+gBJIm8YTYygdCRYQAAzmC/GAbqhHqQH7+xaJECUWS1a+8hbdu5R4WJSPnmnHZs2aCB/h6aDZlADyBJ5A2zkQmEjgwDAHAG+8UwUCfUg/z4L+d6AKjf4PD4VJNJUmEi0radezQ4PO54ZEAy6AEkibxhNjKB0JFhAADOYL8YBuqEepAf/7FokQJDo4WpJispTEQ6PFZwNCIgWfQAkkTeMBuZQOjIMAAAZ7BfDAN1Qj3Ij/+4PJQnFrqO2nzPd7fnlW/OzWi2fHNOK9ryib8PwIVaesDXaxf6Oi6cMTtvKzvyes3G83T85GntO3IsiJqRs3iFsB8u1Xx4/IQWL8rp+MnT1D7lqunzEDJcDeY4AHFhPsmm7va8zu9cqqsuWSUzWe4vP/RksPvFtOpuz2vj+R16/eV9eubEKS1b0qRPP7CPOnnKt/k0bce/vqqn7ixaeGCh66gt9HxvZ4t2bNlw1vO9nS2u3xqQiGp7wNdrF/o6Lsw0PW/Lly3W6190vm6999FgakbO4uf7frhU8w/s+qGu2bhGt90XTl5Rm2r73PcMV4M5DkBcmE+ya83yZXrLFWt1092PTNV+++b1WrN8meuhYZrzOpZqy386X2///ENTdbrl6vU6r2Op66FhFh/n0zQd//qq3roba20Cw0yfjRs32t27d8fyWvuOHNPLb7v/rNW9r23dpL6u1gWfl86sXB0eK2hFm/sVS8zgpBBxZjQE1fRAJT3lguNxkdMqlPJ2ZOyE3vA//9m7LM3H1/xXwNlOrZKc+rwfLtX82hf36ZPf2Rdi7UPixVxaS5/7nOFqBDzHJcmLnKJxjDG65o4HYn3Nu66/XAl+duDFPp/5JLsqrL0XOc2yhx4/qmvu/N5Zdbrrust06erlDkfmFS/2+b7Op2k5/vVVFXUvu9G5p4UHFrqOWiXXWcvljPq6WnVZ37nq62qlyZA51fSAr9cu9HVcOFspb5G1wdWMnDWGz/vhUs2NEbXPiFr63OcMV4M5LjyrVq+RMSb2x6rVa4IYayPG2RC5psy9d+aT7KL2YTg4Ur5Oh0aok2987am0HP/6qt66c3koDyx0HTWuswbEy9ee8nVcmFuINQtxzKhPqeaSqH1GZLnPs/zeQ/XUE4/HflaAVDwzIG6NGGsjxtkQ0anMvXfmk+yi9mFY2bG0bJ16OqiTb+ipbKq37pxp4YHSddSmf6Aw/TpqCz0PoDq+9pSv48LcQqxZiGNGfUo1//JDT2rrFWupfQZkuc+z/N4BxIv5JLuofRj6V7Zr++b1M+q0ffN69a/scDwyzEZPZVO9dedMCw/kckYD/T1at3VT2euoLfQ8gOr42lO+jgtzC7FmIY4Z9ZmqeU+bfjZ+Qnddd5mOnzyt7nZqn1ZZ7vMsv3cA8WI+yS5qH4amppw2X7pKa1e06tBIQT0defWv7FBTE3+f7Rt6KpvqrTuLFp4oXUdtrhvQLPQ8gOr42lO+jgtzC7FmIY4Z9aHm2ZPlmmf5vQOIF/NJdlH7MDQ15XTp6uW6dLXrkWAh9FQ21VN3lh8BAAAAAAAAAIAXWLQAAAAAAAAAAABeYNECAAAAAAAAAAB4gUULAAAAAAAAAADgBRYtAAAAAAAAAACAF1i0AAAAAAAAAAAAXmDRAgAAAAAAAAAAeIFFCwAAAAAAAAAA4IUm1wMAAAAAACBWuSYZY1yPAgAAADVg0QIAAAAAkC7RKV1zxwOxvuRd118e6+sBAACgPC4PBQAAAAAAAAAAvMCZFjGJIqvB4XENjRbU3Z5Xb2eLcjlORwbShl6HK2QPqF+W+ihL7xUAGoW5FPAbPQqfkc/6ZGLRwhizRNIeSd+31v725NeMpHdKul7SuZL+r6S3WGt/VO3rR5HVrr2HtG3nHhUmIuWbc9qxZYMG+nsII5Ai9DpcIXtA/bLUR1l6rwDQKMylgN/oUfiMfNYvK5eHerekdbO+drOkmyR9UNJrJXVIutcY01Htiw8Oj0+FUJIKE5G27dyjweHx+kYNwCv0Olwhe0D9stRHWXqvANAozKWA3+hR+Ix81i/1ixbGmOdL2irp6Wlfa5N0g6T3WGtvs9beI+lXJbVJurbanzE0WpgKYUlhItLhsUI9QwfgGXodrpA9oH5Z6qMsvVcgeLkmGWNifSAezKWA3+hR+Ix81i/Vl4cyxjRJ+mtJfy7p16Y9dZmkVkn3lL5grT1qjPmWpAFJO6r5Od3teeWbczPCmG/OaUVbvo7RA/ANvQ5XyB5Qvyz1UZbeKxC86JSuueOBWF/yrusvj/X1soq5FPAbPYr/n717j5Orrg///3pvbptsLkAICRe5KXhJDNTGX9XWtgKtWAGptlj9VsX6LbZaoWKtdxHRVlvFgtYqtf1aa1tFqwhq8YK22oKX1AKSKqIIyCUhBNgkm2xu+/79MbPLZDKzM7M7M3tm9vV8POax2XM+53M+55z355wz+845nyIzPqev35+0eB0wH/jzquknln/+pGr67RXzmnbs8iEuPedkBueVduf4e8qOXT7UalWSCsy+rpli7EnTN5v60WzaVknqFM+lUrHZR1Vkxuf09e2TFhHxOOBNwKmZubvqMdmlwK7M3F212LbyvHp1ngecB3D00UdPTB8YCE5fvYrHnf907t82ymFLHBFeM6NejKo97OvtYZy2ztjrPuO0//RbP5osRvttW9W7PJeqF/g9X73A8+mB7KPFYozuz/icvr5MWkTEAPB3wN9l5g21igBZZ/pYjekAZOYVwBUA69at22/5gYHg+BWLOX7F4im3W5quyWJU7WFfnz7jdGqMve4yTvtTP/WjRjHaT9uq3uW5VL3A7/nqBZ5Pa7OPFocxeiDjc3r6MmkBvAo4BjijPK7FuCj/PgwsiIh5mbmnYv7i8jxJkiRJkiRJktRl/TqmxW8CRwIPAnvKn5OAF1f8HsBxVcsdD9zavWZKkiRJkiRJkqRxkdl/T+xExGOBJVWT/wn4EXBx+ecm4KLM/IvyMgcDdwIXZ+Z7m1jH5nL5djsUeKAD9c4GRd13D2Tm6d1eaYditKj7uFNm0/b2U5z2itkUX62ot19mJEahr+O0n2NwprZtNp5LixxHRW4bGKczrejx0Qs6tQ+LeM03XmavXro3nc1xOpu3HQoWp2265s/2YzodvbbvasZpXyYtaomIG4EbM/Pc8u9/Afwx8EZKSYw3UXo6Y3VmztgroiJifWaum6n19zL3XefNtn0827ZX3WV81eZ+6Z5+3tf9vG1FU+R9XeS2QfHb1+/c/9M3m/bhbNpW7a+Xjn0vtbXdZvO2Q39ufz9uU7f0y77r1zEtmvFGSoNu/wmlsSyuB14ykwkLSZIkSZIkSZJms1mTtMjMk6t+3wu8vvyRJEmSJEmSJEkzrF8H4u5lV8x0A3qY+67zZts+nm3bq+4yvmpzv3RPP+/rft62oinyvi5y26D47et37v/pm037cDZtq/bXS8e+l9rabrN526E/t78ft6lb+mLfzZoxLSRJkiRJkiRJUrH5pIUkSZIkSZIkSSoEkxaSJEmSJEmSJKkQTFpIkiRJkiRJkqRCMGkhSZIkSZIkSZIKwaTFFJ1++ukJ+PHTzGdGGKN+WvzMCOPUTwufGWOc+mnhMyOMUT8tfmaEceqnhc+MMU79tPCZMcapnxY+M8IY9dPipyaTFlP0wAMPzHQTpEkZo+oFxql6gXGqojNG1QuMU/UC41S9wDhV0RmjageTFpIkSZIkSZIkqRB6LmkREWdFxLYmyq2JiOsiYntE3BURr4uIqCrz9Ij4dkTsiIjbIuL3OtdySZIkSZIkSZI0mZ5KWkTE04CPA9Gg3GHAVym9F+sc4ArgncBrKso8HrgW+CnwXOAa4O8i4rc60nhJkiRJkiRJkjSpuTPdgGZExALgAuASYASY32CRV1LatrMycwfwxXIdb4iIyzJzD/B64A7gBZmZwLURsQJ4K/Dpdm/D3r1jbLhvmPuGRzl82UJWH76UuXMfyRnt2LmbWzZuY9PWXaxcuoA1q5awaOH8ppffvXsfN987zMatoxy+dJAnHrGM+fPnADA2ltyxZYRNW0dZuXSQY5cPMTAQTdetyTXav0XSTFs7tT2V9S6aP5fd+/axfGhB2+ofj+NNW0dZPrSAMXLS+sfbs2VkF/PnDDCyax9DC2q3q9l9Ul3njt37JsoDB9RRa1oz+6LVY9RvMTrVeqDx/m52/ePxtnV0N4Nz57J5+y4OXbyAlUsX8KiDG7d5bCy568ERNm3dxcjuvRxzyBDHHVp/ubGx5KcPjHDngyMMzZ/LyqULOPqQ5tpfud2HLRlkzgDcN1y8WOj1OIXJ46tymcOWDDJ3Dmwcbu74t9KOgYGoeb49ZNGChsd+PM7uHd7BgjlzGNm9l2OXDzGWcP+2zp6n2rVsp/XSPVO7rxXV848+eBF3PbSjEMep3W2b7L661voa7aujli3kB5u2TsTN41cu4e7hnU3PL1IfKJrqc2u7rnFTOQ9Vnx86dRyn0rZGMXnQornc+/AoRxw0yMMje7hva/PnuP2OweIF7Ny7j7sf2jnp8kU+z0vqLQ/vHOVHG0cm/pZ24qohDlo4ONPNUg3tuH5NtsxU7mXvfHAHd24ZYXD+AAvmzGH54vkcddD+95GV95WHLxtk31jpu9Fkf9dq9m9DlfW163rYjmtsUa7TPZG0AJ4FvAF4LbCciicm6jgNuK6csBh3FfBm4MnA9eUyHy8nLCrL/G5EHJGZ97an6aUb2Ktuuoc3X3ULo3vGGJw3wDvOXsPZJx3J3LkD7Ni5m8/fsom3Xv3I/LeftYYz1qxk0cL5DZffvXsfV918L2/9XMXyz1nD2WuPYO7cAa7dsJELr7xxYt6l55zM6atXMTAQDevW5MbGctL9WyTNtLVT21Or3vNPOYFPrr+L153++GnXXyuOJ6t/vD3vvvYHPH/d0Vz+tdvqLgc0tU8mq/PSc05m/tzgj/75fxpOa7QvWj1G/RajU63nAy/8OXbvzbbE/3i8feI7d/K8Jx3NxZ//3kT5i85czREHjfD0xxw26c3U127dxG2btnPZdbc13NZa7brg1BM4YeViTnnsyknbX2u7Lzj1BD52w508tGN3YWKhH+J0sv5ca5mLzlzNh/7jx9y5ZeeUtrdeO3798Sv58g821Tzf/s6Tj6577Gudww5eNJ8XP/WYpuK0mbY1s31FjoVeumdq97Wiev4xyxfyqlNO2G9fzNRxqtX2d5y9hvd/7bYp9a/J7qvnz5/T8r5ad8wyznnyMQfU99dff6R9jX4vSh8omnrXx+le46ZyHqo+PxyzfCGvfMYJ+x33Tt1TN6q31jLVMXbRmav57u0P8OTjD+XiazY0fY5rdAxqLV/k87yk3vLwzlG+fMvmA/6W9utrVpi4KJh2Xb9a+c7c6r3sBaeewPKheawfeOiA+/33f+02du/NA74b1fq702R/G6r8fj7V71rt3s+dqKNdivUNq77vAsdl5uWUXvnUyInAj6um3T4+LyKGgCMmKzPVhtay4b7hiYAHGN0zxpuvuoUN9w0DcMvGbRMn2fH5b736Fm7ZuK2p5W++d3jihnhi+c/dws33DnPHlpGJQBufd+GVN3LHlpGm6tbkGu3fImmmrZ3anlr1Xv612zhj7ZFtqb9WHE9W/3h7zlh75MQFpN5yze6Tyeq88Mobufnu4aamNdoXrR6jfovRqdZz893DbYv/8Xh78dOO5+LPb9iv/MXXbGDbzn2TtvmOLSPcfPfwxM1Jo22t1a7LrruNm+8ebtj+Wtt92XW38dwnHVWoWOiHOJ2sP9da5uJrNnDG2iNrlp9OOzbcd+AxHz+vTXbsa53Dnvuko5qO02ba1sz2FTkWeumeqd3Xiur5Z6w98oB9MVPHqVbb33zVLVPuX5PdV9db32T76sVPO75mfZXta/R7UfpA0dS7Pk73GjeV81D1+eGMtUcecNw7dU/dqN5ay1TH2MXXbOC3nnz0RMJifHqjc1yjY1Br+SKf5yX1lh9tHKn5t7QfbfR8UjTtun618p251XvZy667jUXz59W83z9j7ZE1vxvV+rvTZH8bqvx+PtXvWu3ez52oo116ImmRmfdk5sMtLLIUqB6se1vFvKVV02qVOUBEnBcR6yNi/ebNm5tuzH3DoxMHe9zonjE2Do8CsGnrrprzN23d1dTyG7fWnr9p6yib6sy7f9toU3Vrco32b7dNFqPNtLVT21Ov3oj21F8vjuvVP96e8fmTLdfsPmlU51hVurXetEb7otVjVLQYhfpx2q621qpnLGsfl6nE/3i87dy1t2b5kd17J23zpq2jTbWnUbvGX9kzWbl664mYfJ3d1g9xOll/nuwcWKt8M+rV2eh8WO/Y1zqH1Tuftfs81a5lO61o90zTvea3Ur56/lRjoxPa3b8mu6+ebH319lW9a0V1+xr9XoQ+MBVT/f7UjEbHfqr7bSrnoerzQ6f6yFTa1mwfeWB77e+kk53jmjkG1csX8TzfyTiV2sU4PVCjv6Wpu9p5b9rqMu26lx3ZXf++rZm/H1Wuq1b5yu/nnbhXaMc1tkjX6Z5IWkxBUP+JjDEeGci7ukxUlDlAZl6Rmesyc92KFSuabszhyxYyOG//XT04b4BVy0qPq61cuqDm/JVLFzS1/OFLB+ssP8jKOvMOWzLYVN2aXKP9222TxWgzbe3U9tSrN7M99deL43r1V7an0XLN7pNGdVY/RVdvWqN90eoxKlqMQv04bVdba9UzJ2ofl6nE/3i8LVowt2b5oflzJ23zyqWDTbWnUbsGgobtr7ee8RcjznQsjOuHOJ2sP092DqxVvhn16mx0Pqx37Oudw6ZyXKZzPIsYC+OKds803Wt+K+XrzW+2/k5qd/+a7L56svXV21f1rhXV7Wv0exH6wFRM9ftTMxod+6nut6mch+qdH1qpo1Nta7aPrFhc+zvpZOe4Zo5B9fJFPM93Mk6ldjFOD9Tob2nqrnbem7a6TLvuZYfmT37f1szfnSb721D19/N2Xw/bcY0t0nW6X5MWw8CSqmlLKuZtrZo2bnFFmbZZffhS3nH2mv2C9h1nr2H14csAWLNqCW8/a//5bz9rDWtWLWlq+ScesYy3P6dq+eesYe0Ryzh2+RCXnnPyfvMuPefkicFfGtWtyTXav0XSTFs7tT216j3/lBP4/M33tKX+WnE8Wf3j7bnmpns4/5QTJl2u2X0yWZ2XnnMya49a1tS0Rvui1WPUbzE61XqeeNSytsX/eLz9w/W3c9EZq/crf9GZq1mycM6kbT52+RBPPGoZF5x6YJzUWq5Wuy449QTWHrWsYftrbfcFp57AZ753d6FioR/idLL+XGuZi85czedvvqdm+em0Y/XhS+uebyc79rXOYf/633c3HafNtK2Z7StyLPTSPVO7rxXV86+56Z4D9sVMHadabX/H2Wum3L8mu6+ut77J9tU/XH97zfoq29fo96L0gaKpd32c7jVuKueh6vPDNTfdc8Bx79Q9daN6ay1THWMXnbmaT333Li46c/UBfWmyc1yjY1Br+SKf5yX1lhNXDdX8W9qJqzyfFE27rl+tfGdu9V72glNPYMfuPTXv9z9/8z01vxvV+rvTZH8bqvx+PtXvWu3ez52oo11i/3Goiy8i3gb8SWYunqTM9cAdmfnCimk/D6wHfiEzvxMR9wIfzcw3VpR5HvBpYFVmbpqsHevWrcv169c33e69e8fYcN8wG4dHWbVskNWHL9tvQLIdO3dzy8ZtbNq6i5VLF7Bm1RIWLZzf9PK7d+/j5nuHJ0Z2X3vEMubPnwM8Mur7/dtGOWzJgaO+N6pbk2u0f3nkCZ6uqhWjTbS1qTJTMV7vpq2jLJo/hz37xjhkaEHb6h+P401bd3HI0HySZPkk9Y+358GRXcybM8CO3fvqtqvZfVKrzpVLBydO7tV11JrWzL5o9Rg1Wb4Qcdqu+KtVDzTe382ufzzeto3uZsHcuWzevotDhxawctkCHnVw4zaPjSV3PTjCpq272LF7L0cfMsRxh9Zfbmws+ekDI9z14AiL5s9l5dIFHH1Ic+2v3O4ViweZM1B6/Uk7+3c7FPVcCs3FKUweX5XLrFg8yNw5sHG4ueNfT719Vut8e/CiBQ2P/Xic3Te8g/lz5jCyey/HLh9iLGHz9s6ep9q1bKc1cc9UiHMptP9aUT3/6IMXcddDOwpxnNrdtsnuq2utr9G+OmrZQn6waetE3Dx+5VLuHt7Z9PwO7NvCxOl0VZ9b23WNm8p5qPr80KnjOJW2TRqTSwc5aGge9w2PcviyQR4e2cPGrc1/L6ys+9ChBYzu3cc9D+2cdPleuuZLkzBOC+DhnaP8aOPIxN/STlw15CDc+yvMNb8d16/JlpnKveydD+7grgdHmD93gMG5c1i+eD5HHbT/fWTlfeWqpYPsGyu9pnmyv2s1+7eh8fpa/a7Vrn3WyTpaVLPyfk1aXAK8nNLg3SMV0/4QOCIzd0fEPwInAydn5r5ymX8s//7ERu3wIqEWFOYiIU3COFXR+cVQvcBzqXqBcaqi85qvXmCcqhd4zVcvqBmnffHf6SPi0RHxlIpJHwTmA1+MiDMi4k3AG4B3Zebucpn3AI8FPhURz4qI9wK/C7y9m22XJEmSJEmSJEklfZG0AN4C3DD+S2beB5wGzKX0uqfzgDdl5nsqytwEnAkcD3y2/O+XZuanuthuSZIkSZIkSZJUNnemG9CqzHwb8LaqaecC51ZNWw/8YoO6vgR8qZ3tkyRJkiRJkiRJU9MvT1pIkiRJkiRJkqQeZ9JCkiRJkiRJkiQVgkkLSZIkSZIkSZJUCCYtJEmSJEmSJElSIZi0kCRJkiRJkiRJhWDSQpIkSZIkSZIkFYJJC0mSJEmSJEmSVAgmLSRJkiRJkiRJUiGYtJAkSZIkSZIkSYVg0kKSJEmSJEmSJBWCSQtJkiRJkiRJklQIJi0kSZIkSZIkSVIhmLSQJEmSJEmSJEmFYNJCkiRJkiRJkiQVgkkLSZIkSZIkSZJUCCYtJEmSJEmSJElSIZi0kCRJkiRJkiRJhWDSQpIkSZIkSZIkFYJJC0mSJEmSJEmSVAhz211hRFzdQvHMzOe0uw2SJEmSJEmSJKn3tD1pASwFsgP1SpIkSZIkSZKkPtb2pEVm/mq765QkSZIkSZIkSf2vE09aHCAiFgELgBifBCwCnpqZV3ajDZIkSZIkSZIkqdg6OhB3RKyJiO8C24AHgM3lz/3AHcC/tFDX70fEbRGxMyJuiIinTlL2jojIOp+LKsrdUmP+A1PdXkmSJEmSJEmSNHWdftLiUuBw4DXAmcBu4GrgWcCzgVObqSQiXgx8CHg78F3gVcCXIuKkzPxpjUV+k9KTHZUuLK/3k+U65wMnAq8H/qOi3J5m2iRJkiRJkiRJktqr00mLpwB/lJkfi4jtwLmZ+TfA30TEPwPnA/8+WQUREZSSFVdk5sXlaV8BbgVeXa5jP5n5P1V1rKOUyDgvM39YnvwEYB7wuYppkiRJkiRJkiRphnT09VCUkgLjT0L8EDipYt4/AL/QRB2PAY6h9IQGAJm5B/gCcHqT7bic0hMaH62YthYYBW5rsg5JkiRJkiRJktRBnU5a3MYjiYofAkMR8fjy73OApU3UcWL554+rpt8OPDoi5ky2cEQ8B3gq8JrMzIpZa4EtwCcjYmtEDEfERyJiSRNtkiRJkiRJkiRJbdbppMXfAX8ZEa/PzAeA/wL+LiLOBf4MuKmJOsYTG9uqpm+j1P6hBsu/GvjPzLyhavpaYFW5Dc8G3gw8D7iqXkURcV5ErI+I9Zs3b26i6VJ3GaPqBcapeoFxqqIzRtULjFP1AuNUvcA4VdEZo2q3jiYtMvMy4C2UkgMAvw+sAP4eOIjSgNqNxHh1daaP1V0w4rHArwCX1Zj9OuCXMvOSzPxmZr4f+APglIh4eq36MvOKzFyXmetWrFjRRNOl7jJG1QuMU/UC41RFZ4yqFxin6gXGqXqBcaqiM0bVbp0eiJvMfE/Fv38YEScCKzLz/iarGC7/XAJsqpi+mFLCYmSSZZ8DbAc+X6Nd/3Ngca4t/zwJ+GaT7ZMkSZIkSZIkSW3Q9qRFRDwJ+EFm7iz/u165owAy83sNqhwfKPt49h/X4njg1qpxKqqdDvxbZo5WrXsu8LvATVXJi4Xlnw80aJMkSZIkSZIkSWqzTjxpsR54CvCd8r/rJRWiPG/SgbQpJS1+BpwNfBkgIuZRGofiC/UWiogA1gFvq56XmXsj4mLgRkpPY4x7HrAHqB7/QpIkSZIkSZIkdVgnkhbPAP634t/TkpkZEe8CPhARD1EazPuPgEOB9wFExKMpvXLqWxWLHkPplVK31qn6ncCHI+Iy4BrgycBbgcsz887ptluSJEmSJEmSJLWm7UmLzPyPil9fDny4atpU6vxgRCwELgBeTekJiWdm5u3lIm8BXsIjg3MDHFb++XCdOq+IiN3AhcB5wEbgEuBd02mrJEmSJEmSJEmamk4PxP1s4G/bUVFmvhd4b5155wLnVk37DvsnMWot91Hgo+1onyRJkiRJkiRJmp6BDtf/eeCVEXFwh9cjSZIkSZIkSZJ6XKeftFhE6WmL34yIzcD9VfMzM0/qcBskSZIkSZLUx4581NHce/fP2lrnEUc9int+dldb65QkNdbppMXDwD91eB2SJEmSJEmaxe69+2c8/8PXt7XOT778aW2tT5LUnI4mLTLzpZ2sX5IkSZIkSZIk9Y9OP2lBRCwEfg/4FWApsAX4T+BjmTnS6fVLkiRJkiRJkqTe0NGBuCPiMOC/gcuAxwAJPAF4P/A/5fmSJEmSJEmSJEmdTVoA76E0GPcTM/NJmfmszPw54ImUnvJ4d4fXL0mSJEmSJEmSekSnkxbPBt6UmT+onFj+/S3l+ZIkSZIkSZIkSR1PWgA8PMn0oS6sX5IkSZIkSZIk9YBOJy2+A1wQEXMqJ0bEXODVwHc7vH5JkiRJkiRJktQj5na4/tcBNwA/jojPAZuAlcBzgFXAKR1evyRJkiRJkiRJ6hEdTVpk5s0R8YuUxq94IXAw8CDwn8A7M/N7nVy/JEmSJEmSJEnqHR1NWkTE0cCGzHxejXmDEfGUzPxWJ9sgSZIkSZIkSZJ6Q6fHtPgpcHKdeb8AfK3D65ckSZIkSZIkST2i7U9aRMSHgCPGfwXeGxEP1yj6eOCBdq9fkiRJkiRJkiT1pk48afFFYEn5AzBU8fv4ZxFwE/A7HVi/JEmSJEmSJEnqQW1/0iIzrwauBoiIrwOvyMwftHs9kiRJkiRJkiSpv3R0IO7MfEYn65ckSZIkSZIkSf2jo0mLiLi9UZnMPL6TbZAkSZIkSZIkSb2ho0kLSq+Jyqppi4GnAYcBf9bh9UuSJEmSJEmSpB7R6ddD/XGt6RERwCeAozu5fkmSJEmSJEmS1DsGZmKlmZnAh4EXzcT6JUmSJEmSJElS8cxI0qLsCXT+9VSSJEmSJEmSJKlHdHog7strTB4AjgCeDfxzJ9cvSZIkSZIkSZJ6R6eftDgLOLPq8xvA8cClwKuarSgifj8ibouInRFxQ0Q8tUH5z0dE1vgsrijz9Ij4dkTsKNf9e1PZSEmSJEmSJEmSNH2dHoj72HbUExEvBj4EvB34LqVkx5ci4qTM/GmdxdYCl1Ea8LvSjnKdjweuBa4BLgJ+Hfi7iNiamZ9uR7slSZIkSZIkSVLzOv16qK8Br8jMH9aYtxb4WGae3KCOoJSsuCIzLy5P+wpwK/Bq4PwayxwEPAq4NjO/Vafq1wN3AC8oDwx+bUSsAN4KmLSQJEmSJEmSJKnL2p60iIizKur9VeCsiHhCjaKnAY9uosrHAMcAV49PyMw9EfEF4PQ6y6wt/7x5knpPAz5eTliMuwr43Yg4IjPvbaJtkiRJkiRJkiSpTTrxpMUpPPL0QwLvmqTsZPPGnVj++eOq6bcDj46IOZm5r2reWmAX8I6IeA6wEPgC8KrM3BgRQ5QGA69V5/g6TVpIkiRJkiRJktRFnRiI+0+B4ygNth3Ac8u/V36OBpZl5hubqG9p+ee2qunbKLV/qMYya4EF5TK/CbwCeCrwtYhY0KDOynXuJyLOi4j1EbF+8+bNTTRd6i5jVL3AOFUvME5VdMaoeoFxql5gnKoXGKcqOmNU7db2pEVm7s7MOzPzDkoJii+Uf6/83J2ZEwmDiBiIiK9FxAk1qozxqutMH6uxzKXAKZl5QWZ+IzM/CjwPeDxwzhTrJDOvyMx1mbluxYoVtYpIM8oYVS8wTtULjFMVnTGqXmCcqhcYp+oFxqmKzhhVu3XiSYsJ5QTFniaKBqXxL5bUmDdc/lk9bzGl5MJIjfX+MDO/XjXt28DDwEnA1knqrFynJEmSJEmSJEnqko4mLdrktvLP46umHw/cWjWQNgAR8TsR8ctV04LSK6MeyMztwH116gT40bRbLUmSJEmSJEmSWtIrSYufAWePT4iIecCzgevqLPOHwGURUbl9v0FpQO5vlH+/DjgzIuZUlDkbuCUzN7Wl5ZIkSZIkSZIkqWlzZ7oBjWRmRsS7gA9ExEPAfwF/BBwKvA8gIh4NrMjMb5UX+zPg34CPR8T/A04ELgH+NTOvL5d5D/Bd4FMR8bfAacDvUhrzQpIkSZIkSZIkdVkvPGlBZn4QeC3wIuDTwEHAMzPz9nKRtwA3VJT/EnAW8BjgKuBNwN+Xlx8vcxNwJqVXQn22/O+XZuanOrs1kiRJkiRJkiSplsI/aTEuM98LvLfOvHOBc6umfR74fIM6vwR8qT0tlCRJkiRJkiRJ09ETT1pIkiRJkiRJkqT+Z9JCkiRJkiRJkiQVQlGSFmPAPwAPzHRDJEmSJEmSJEnSzOh40iIijouIj0TETyNiZ0Q8KSIujYj/O14mS16amXd1uj2SJEmSJEmSJKmYOpq0iIiTgf8Bfgm4Bpg/Pgv4cES8qJPrlyRJkiRJkiRJvaPTT1q8D7gBeAJwIaVkBZn5auBvgNd0eP2SJEmSJEmSJKlHdDpp8QvA+zNzDMiqeZ8GTujw+iVJkiRJkiRJUo/odNJiK7Cqzryjy/MlSZIkSZIkSZI6nrT4FPDnEfEMyq+GAjIiTgQuAq7q8PolSZIkSZIkSVKP6HTS4nXALcB1wEPlaV8E/hfYXJ4vSZIkSZIkSZLE3E5Wnpk7gFMj4pnAM4BDgGHgP4FrymNdSJIkSZIkSZIkdTZpMS4zvwR8qRvrkiRJkiRJkiRJvanjSYvyUxa/AQxx4OuoMjNf1uk2SJIkSZIkSZKk4uto0iIi3gi8A9gC3AtUvw4qO7l+SZIkSZIkSZLUOzr9pMUrgA8Br8xMExSSJEmSJEmSJKmu6tc1tdvBwJUmLCRJkiRJkiRJUiOdTlp8A/iVDq9DkiRJkiRJkiT1gU6/Huqvgb+PiEOBbwM7qgtk5mc63AZJkiRJkiRJktQDOp20uLr885XlT7UE5nS4DZIkSZIkSZIkqQd0OmlxXIfrlyRJkiRJkiRJfaKjSYvMvLOT9UuSJEmSJEmSpP7R9qRFRNwMvDAzb4mI71N6BVQ9mZkntbsNkiRJkiRJkiSp93TiSYv/BkYq/j1Z0kKSJEmSJEmSJAnoQNIiM19a8e9z212/JEmSJEmSJEnqT514PdSTWimfmd9rst7fB/4UOAq4EbgwM2+YpPzTgHcCPwfsAL4KvDYzN1WUuQVYXbXolsw8tJVtkCRJkiRJkiRJ09eJ10Otp7lXQkW53JyGBSNeDHwIeDvwXeBVwJci4qTM/GmN8o8HrgO+ArwAOBi4pLzMkzNzT0TMB04EXg/8R8Xie5pouyRJkiRJkiRJarNOJC2e0c7KIiIoJSuuyMyLy9O+AtwKvBo4v8ZifwTcBzwvM/eUl7kN+A7wa8AXgScA84DPZeYP29lmSZIkSZIkSZLUuk6MafEfjUu15DHAMcDVFevYExFfAE6vs8wG4H/HExZlt5Z/Hlf+uRYYBW5rb3MlSZIkSZIkSdJUdOJJi/1ExDOB3wCGgIGq2ZmZL2tQxYnlnz+umn478OiImJOZ+6oq/WCNes4s/xx/qmItsAX4ZET8OqVXVX0KeHVmbmvQJkmSJEmSNAsc+aijuffun7W1ziOOehT3/OyuttYpSVK/6GjSIiLeCLyDUnLgXmCsqkgzY18sLf+sTiRso5QEGQK2NmjHo4D3UBpv42vlyWuBVcBNwGXAyZReQ3UccGqdes4DzgM4+uijm2i61F3GqHqBcapeYJyq6IxR9QLjVL2gmTi99+6f8fwPX9/W9X7y5U9ra33qb55PVXTGqNqt+smHdnsFpQG0D8vMkzLz56o+T2qijij/rE5wjE+vToTsX6iUsLiO0rb+TmaO1/M64Jcy85LM/GZmvh/4A+CUiHh6rboy84rMXJeZ61asWNFE06XuMkbVC4xT9QLjVEVnjKoXGKfqBcapeoFxqqIzRtVunU5aHAxcWZEomIrh8s8lVdMXU0pYjNRbMCLWANdTelrj1zLzJ+PzMvN/MvNbVYtcW/550jTaK0mSJEmSJEmSpqDTSYtvAL8yzTrGB8o+vmr68cCt9RIiEfEL5fXvA56emTdXzJsbEedGxM9VLbaw/POBabZZkiRJkiRJkiS1qNMDcf818PcRcSjwbWBHdYHM/EyDOm4DfgacDXwZICLmAc8GvlBrgYg4Fvg3YBNwambeW7XOvRFxMXAj8JyKWc8D9gA3NGiTJEmSJEmSJElqs04nLa4u/3xl+VMtgTmTVZCZGRHvAj4QEQ8B/wX8EXAo8D6AiHg0sKLidU+XUXol1CuBoyOicgSYOzPzPuCdwIcj4jLgGuDJwFuByzPzzpa3VJIkSZIkSZIkTUunkxbHlX/OofTqpaWUXr20lwYDaFfKzA9GxELgAuDVlJ6QeGZm3l4u8hbgJUCUn8L4jfI6/7lGda8F3pOZV0TEbuBCSqPbbwQuAd7VygZKkiRJkiRJkqT26GjSIjPvjIjfA/4MqBw6/n7gbZn54Rbqei/w3jrzzgXOLf97DzCvyTo/Cny02TZIkiRJkiRJkqTO6WjSIiJeAHwE+ET5swk4HHg+8MGIGM7MT3SyDZIkSZIkSZIkqTd0+vVQbwA+lJmvqJp+VUQ8CPwppWSGJEmSJEmSJEma5QY6XP8JwGfqzLsKeFyH1y9JkiRJkiRJknpEp5MWdwJPrDNvLbClw+uXJEmSJEmSJEk9otOvh/oo8PaI2AZ8OjMfjoiDgN8G3gZ8oMPrlyRJkiRJkiRJPaLTSYv3ACcBVwAfjoi95XUG8K/AWzu8fkmSJEmSJEmS1CM6mrTIzL3ACyLincAvAwcDDwL/mZnf7+S6JUmSJEmSJElSb+n0kxYAZOYtwC3dWJckSZIkSZIkSepNnR6IW5IkSZIkSZIkqSkmLSRJkiRJkiRJUiGYtJAkSZIkSZIkSYVg0kKSJEmSJEmSJBWCSQtJkiRJkiRJklQIJi0kSZIkSZIkSVIhmLSQJEmSJEmSJEmFYNJCkiRJkiRJkiQVgkkLSZIkSZIkSZJUCCYtJEmSJEmSJElSIZi0kCRJkiRJkiRJhWDSQpIkSZIkSZIkFYJJC0mSJEmSJEmSVAgmLSRJkiRJkiRJUiGYtJAkSZIkSZIkSYXQM0mLiPj9iLgtInZGxA0R8dQG5ddExHURsT0i7oqI10VEVJV5ekR8OyJ2lOv+vc5uhSRJkiRJkiRJqqcnkhYR8WLgQ8DHgecBDwNfiojj6pQ/DPgqkMA5wBXAO4HXVJR5PHAt8FPgucA1wN9FxG91bEMkSZIkSZIkSVJdc2e6AY2Un454O3BFZl5cnvYV4Fbg1cD5NRZ7JaVtOyszdwBfjIgFwBsi4rLM3AO8HrgDeEFmJnBtRKwA3gp8utV2jo0ld2wZYdPWUVYuHeTY5UMMDETT86db/2R2797HzfcOs3HrKIcvHeSJRyxj/vw5bWub1Emdis+9e8fYcN8w9w2Pcviyhaw+fClz5+6fx621bqDt7alcz2FLBpkzAPcN2x+7qZU4a2dMjo0lP31ghDsfHGFo/lxWLl3A0YfUrq/d622lLq8TzZvpfVW9/qMPXsRdD+1gy8gu5s8ZYGTXPoYWzGX3vn0sH1pQqGPZjX0308enm7q5rfXirij9oJv33d2oryjrmq52tHUqdRQtPtqp8v72qIMXMjh3Dpu37ypcOyWpXUZ27mLDxu1s2rqLlUsXsHrVYoYWLpjpZqlLZuqa3Ox6x8uNfxfbsXtfS+3s1t+kOmk6x6jwSQvgMcAxwNXjEzJzT0R8ATi9zjKnAdeVExbjrgLeDDwZuL5c5uPlhEVlmd+NiCMy895mGzg2lly7YSMXXnkjo3vGGJw3wKXnnMzpq1cxMBAN50+3/sns3r2Pq26+l7d+7paJZd/+nDWcvfYI5s+fM+22SZ3Uqfjcu3eMq266hzdf9Ui/eMfZazj7pCMnEhf11j1/bvBH//w/bWtPrfVccOoJfOyGO3lox277Yxe0EmftjMl6x/6ElYs55bErD0h8d3K9k9XldaJ5M72vaq3/HWev4RPfuZNTHreKy79228T08085gU+uv4vXnf74QhzLbuy7mT4+3dTNba0Xd+//2m3cuWVnIfpBt+67u1FfUdY1Xe1o61TqKFp8tFPl/e3Bi+bz4qcew2XX3Va4dkpSu4zs3MUXbrmft15d8feus9bw7DWHmbiYBWbqmtzsesfLvfvaH/D8dUfv912smXZ2629SnTTdY9QLr4c6sfzzx1XTbwceHRFzONCJdcoDnBgRQ8ARk5VppYF3bBmZOAAAo3vGuPDKG7ljy0hT86db/2Ruvnd4ImExvuxbP3cLN9873Ja2SZ3UqfjccN/wRMJivN43X3ULG+4bbrjum+8ebmt7aq3nsutu47lPOsr+2CWtxFk7Y7Lesb/57uED6uv0eiery+tE82Z6X9Va/5uvuoUXP+34iZvk8emXf+02zlh7ZGGOZTf23Uwfn27q5rbWi7sz1h7Z8XU3255u3Xd3o76irGu62tHWqdRRtPhop8r72+c+6aiJhAUUq52S1C4bNm6fSFhA+e9dV9/Cho3bZ7hl6oaZuiY3u97xcmesPfKA72LNtLNbf5PqpOkeo15IWiwt/9xWNX0bpfYP1VmmVvnxeZPVWbnO/UTEeRGxPiLWb968eWL6pq2jEwdg3OieMe7fNtrU/Eams/zGOstu2tqetqlY6sVor+pUfN43XLvejcOP1Ftv3WPJAdOm055664loT/1FVLQ4bSXO2hmTk8VYdX3dWG+9umbrdWIqcTrT+6re+nfu2lv3PFOUY9mNfTfTx6fdJovRbm5ro+tYJ9fdSnu6cd/djfqKsq5mTfX7UzOmUkfR4qOdKu9vx8/vlYrSziIq2r2pVItxeqBNW3fV+XvXrhlq0ezW7RidqWtys+sdLzfVa3K3/ibVSdM9Rr2QtBj/ypN1po9xoKhRftzYFOskM6/IzHWZuW7FihUT01cuHWRw3v67cnDeAIctGWxqfiPTWf7wOsuuXNqetqlY6sVor+pUfB6+bGHNelcte6TeeuuufoJtuu2pt57xF9f1Y38sWpy2EmftjMnJYqy6vm6st15ds/U6MZU4nel9VW/9ixbMrXueKcqx7Ma+m+nj026TxWg3t7XRdayT626lPd247+5GfUVZV7Om+v2pGVOpo2jx0U7V97dFbWcRFe3eVKrFOD3QyqUL6vy9y1dDzYRux+hMXZObXW9luam0s1t/k+qk6R6jXkhajL+vZUnV9MWUkgu1nikZrlF+ScW8rZPUWbnOphy7fIhLzzl5v2C89JyTJwZIaTR/uvVP5olHLOPtz1mz37Jvf84a1h6xrC1tkzqpU/G5+vClvOPs/fvFO85ew+rDlzVc99qjlrW1PbXWc8GpJ/CZ791tf+ySVuKsnTFZ79ivPWrZAfV1er2T1eV1onkzva9qrf8dZ6/hH66/nfNPOWG/6eefcgKfv/mewhzLbuy7mT4+3dTNba0Xd5+/+Z6Or7vZ9nTrvrsb9RVlXdPVjrZOpY6ixUc7Vd7f/ut/380Fp55QyHZKUrusXrWYt59V9feus9awetXiBkuqH8zUNbnZ9Y6Xu+amew74LtZMO7v1N6lOmu4xiv3HoS6eiDgRuBV4ZmZ+uWL6+4FTM/MJNZa5HrgjM19YMe3ngfXAL2TmdyLiXuCjmfnGijLPAz4NrMrMTZO1a926dbl+/fqJ38dHQ79/2yiHLTlwNPRG8xuZzvK7d+/j5nuHJ0ZqX3vEMubPf2QokOm2TQ3NyM6sjtFe1an43Lt3jA33DbNxeJRVywZZffiyiUG4J1s30Pb2VK5nxeJB5gyUXu3W5f44q+O0lThrZ0yOjSU/fWCEux4cYdH8uaxcuoCjD6ldX7vX20pdBblOzNiFqZU4nel9Vb3+ow9exF0P7eDBkV3MmzPAjt37WDR/Dnv2jXHI0IJCXfO7se+6sI7CnEu7GYv14q4o/aCb993dqK8N6ypEnLZjv0yljqLFRztV3t8eefBCBufO4YGRXYVrZxMKd82PCJ7/4evbuq5PvvxpFP3vMb2my8epcHE6G43s3MWGjdvZtHUXK5cuYPWqxQ7Cvb9CXPM7Zaauyc2ud7xc5XexlUubb2e3/ibVSdO5N+2FpEUAdwKfz8xXlKfNo5TI+EJmvqrGMpcALweOy8yRiml/CByRmbsj4h+Bk4GTM3Nfucw/ln9/YqN2eZFQC/r6IqG+YZyq6PxiqF7guVS9wDhV0RXumm/SojeYtJAO4DVfvaBmnM7tditalZkZEe8CPhARDwH/BfwRcCjwPoCIeDSwIjO/VV7sg8CrgC9GxF8CJwFvAF6fmbvLZd4DfBf4VET8LXAa8LvAOd3ZMkmSJEmSJEmSVKkXxrQgMz8IvBZ4EaXXNx1E6XVRt5eLvAW4oaL8fZSSEHPL5c8D3pSZ76kocxNwJnA88Nnyv1+amZ/q9PZIkiRJkiRJkqQDFf5Ji3GZ+V7gvXXmnQucWzVtPfCLDer8EvCl9rRQkiRJkiRJkiRNR+HHtCiqiNhMaayNdjsUeKAD9c4GRd13D2Tm6d1eaYditKj7uFNm0/b2U5z2itkUX62ot19mJEahr+O0n2NwprZtNp5LixxHRW4bGKczrejx0Qs6tQ+LeM03XmavXro3nc1xOpu3HQoWp2265s/2YzodvbbvasapSYuCiYj1mbluptvRi9x3nTfb9vFs2151l/FVm/ule/p5X/fzthVNkfd1kdsGxW9fv3P/T99s2oezaVu1v1469r3U1nabzdsO/bn9/bhN3dIv+64nxrSQJEmSJEmSJEn9z6SFJEmSJEmSJEkqBJMWxXPFTDegh7nvOm+27ePZtr3qLuOrNvdL9/Tzvu7nbSuaIu/rIrcNit++fuf+n77ZtA9n07Zqf7107Hupre02m7cd+nP7+3GbuqUv9p1jWkiSJEmSJEmSpELwSQtJkiRJkiRJklQIJi0kSZIkSZIkSVIhmLSQJEmSJEmSJEmFYNJCkiRJkiRJkiQVgkmLKTr99NMT8OOnmc+MMEb9tPiZEcapnxY+M8Y49dPCZ0YYo35a/MwI49RPC58ZY5z6aeEzY4xTPy18ZoQx6qfFT00mLabogQcemOkmSJMyRtULjFP1AuNURWeMqhcYp+oFxql6gXGqojNG1Q4mLSRJkiRJkiRJUiEUKmkREWdFxLYmyq2JiOsiYntE3BURr4uIqCpzS0Rk1eeBqjJnR8T3I2JnRNwUEWe0e5skSZIkSZIkSVJzCpO0iIinAR8HokG5w4CvUnrn1TnAFcA7gddUlJkPnAi8HnhqxeeZFWVOAT4N/Dvwm8DNwGcj4int2iZJkiRJkiRJktS8uTPdgIhYAFwAXAKMAPMbLPJKSu0+KzN3AF8s1/GGiLgsM/cATwDmAZ/LzB/Wqeci4CuZ+ary79dGxDHAG4GzprVRkiRJkiRJkiSpZUV40uJZwBuA1wLvb6L8acB15YTFuKuAQ4Anl39fC4wCt9WqICIWAk8Drq6a9TngtIiY02zjJUmSJEmSJElSexQhafFd4LjMvJzSK58aORH4cdW02yvmQSlpsQX4ZERsjYjhiPhIRCwpzz+e0tMatepZCDyqxW2QJEmSJEmSJEnTNOOvh8rMe1pcZClQPVj3top5UEparAJuAi4DTgbeDhwHnFpRrlE9+4mI84DzAI4++ugWmy11njGqXmCcqhcYpyo6Y1S9wDhVLzBO1QuaidMjH3U09979s242SwVxxFGP4p6f3TWjbfBcqnab8aTFFAT1n8gYK/98HbAgM79V/v2bEXE/8ImIeDqwrzy9up7xQcDHqCEzr6A08Dfr1q1r5qkQqauMUfUC41S9wDhV0Rmj6gXGqXqBcape0Eyc3nv3z3j+h6/vartUDJ98+dNmugmeS9V2vZi0GAaWVE1bUjGPzPyfGstdW/55EvD1quXGLa6sR5IkSZIkSZIkdU8RxrRo1W2UxqSoNP77rRExNyLOjYifqyqzsPzzAUpjV4zVqWc7cG8b2ytJkiRJkiRJkprQi0mL64DTImKoYtrZlAbevjEz9wIXA2+rWu55wB7ghszcCVxfXq7Sc4B/z8x9SJIkSZIkSZKkrir866Ei4tHAiorxKT4IvAr4YkT8JaXXPb0BeH1m7i6XeSfw4Yi4DLgGeDLwVuDyzLyzXObPgS9ExBXAZ4EXAk8FfrkLmyVJkiRJkiRJkqr0wpMWbwFuGP8lM+8DTqOUcPk0pZHp35SZ76kocwXwUuAZlJIW5wGXAH9aUeaLwIuAX6WUtFgLnJ2ZE+uSJEmSJEmSJEndU6gnLTLzbVS91ikzzwXOrZq2HvjFBnV9FPhogzIfBz7eYjMlSZIkSZIkSVIH9MKTFpIkSZIkSZIkaRYwaSFJkiRJkiRJkgrBpIUkSZIkSZIkSSoEkxaSJEmSJEmSJKkQTFpIkiRJkiRJkqRCMGkhSZIkSZIkSZIKwaSFJEmSJEmSJEkqBJMWkiRJkiRJkiSpEExaSJIkSZIkSZKkQjBpIUmSJEmSJEmSCsGkhSRJkiRJkiRJKgSTFpIkSZIkSZIkqRBMWkiSJEmSJEmSpEIwaSFJkiRJkiRJkgrBpIUkSZIkSZIkSSoEkxaSJEmSJEmSJKkQTFpIkiRJkiRJkqRCMGkhSZIkSZIkSZIKwaSFJEmSJEmSJEkqBJMWkiRJkiRJkiSpEExaSJIkSZIkSZKkQjBpIUmSJEmSJEmSCsGkhSRJkiRJkiRJKoRCJS0i4qyI2NZEuTURcV1EbI+IuyLidRERVWXOiIhvR8S2iLgjIi6PiCUV8yMitkZEVn3Wd2LbJEmSJEmSJEnS5ObOdAPGRcTTgI8D0aDcYcBXgVuAc4AnAe8E9gHvKZd5BnA18FHgLcAx5TKPAX6jXNVxwBLgJcCPKlaxvR3bI0mSJEmSJEmSWjPjSYuIWABcAFwCjADzGyzySkrtPiszdwBfLNfxhoi4LDP3AH8C/Fdm/l7Feh4GroyIJ2Tm/wJrgTHg0+V6JEmSJEmSJEnSDCrC66GeBbwBeC3w/ibKnwZcV5VouAo4BHhy+fdvAX9dtdyt5Z/HlX+uBX5iwkKSJEmSJEmSpGIoQtLiu8BxmXk5kE2UPxH4cdW02yvmkZmXZOYnqsqcWf75w/LPtcCuiPhyROyIiM0R8RcRMa/1TZAkSZIkSZIkSdM140mLzLwnMx9uYZGlQPVg3dsq5h0gIk6i9DTHZzLzJ+XJa4FHUxr74nTgr4BXAR+ut+KIOC8i1kfE+s2bN7fQZKk7jFH1AuNUvcA4VdEZo+oFxql6gXGqXmCcquiMUbXbjCctpiCo/0TG2AGFI9YCXwbuAc6rmPVS4CmZ+YHM/EZmvhN4G3BuRBxTq/LMvCIz12XmuhUrVkxnG6SOMEbVC4xT9QLjVEVnjKoXGKfqBcapeoFxqqIzRtVuvZi0GAaWVE1bUjFvQkT8KvAN4GHgtMzcMj4vM/8rM2+uqudaSkmRJ7avuZIkSZIkSZIkqRm9mLS4DTi+atr47+ODbRMRZ1FKQvwUeHpm/qxi3rKIeFlEPLqqnoXlnw+0t8mSJEmSJEmSJKmRua0UjogntVI+M7/XWnOach3w8ogYysyR8rSzgS3AjQAR8f8BV1Ia5PvZmbm1qo7dwF9TGr/igorpzwMeAr7fgXZLkiRJkiRJkqRJtJS0ANZTfzyJWmNNzGm5RdWVlp6GWJGZ3ypP+iClAbO/GBF/CYwPsv36zNxdLvO3wB7gz4AnRERllT/KzAcj4lLgTyNiC3A98GvAhcAFFckQSZIkSZIkSZLUJa0mLZ5R8e/jgL8BrgD+FdgILAeeDbwSeEU7Ggi8BXgJpaQImXlfRJwGXAZ8GtgEvCkz3wMQEccCa8vLfrFGfb9dXu4twIPA7wNvBO4A/jAzr2hTuyVJkiRJkiRJUgtaSlpk5n+M/zsi3gm8OzPfVlXshojYBrwW+JcW638b8LaqaecC51ZNWw/8Yp067qCc4Giwrn3Ae8ofSZIkSZIkSZI0w6YzEPeTKL1WqZabgMdOo25JkiRJkiRJkjTLTCdp8UNKr23aT0QMUHo91E3TqFuSJEmSJEmSJM0yrY5pUenNwOci4iTgWuAB4DDgTOAISgNbS5IkSZIkSZIkNWXKSYvM/GJEPB34U+B3gYOBLcDXgXdm5v+2p4mSJEmSJEmSJGk2mM6TFmTmt4DntqktkiRJkiRJkiRpFpvOmBZExLKIeHNEfD0ifhARqyPidRFxersaKEmSJEmSJEmSZocpJy0i4ljg+8CFwFbgRGABsBa4JiKe1Y4GSpIkSZIkSZKk2WE6r4e6DLgPOBUYBXYDZOb/iYh5wFuBf5t2CyVJkiRJkiRJ0qwwnddDnQL8WWZuB7Jq3oeBNdOoW5IkSZIkSZIkzTLTSVrsBhbWmXcIsGsadUuSJEmSJEmSpFlmOkmLLwDviIgTKqZlRBwCvAH40rRaJkmSJEmSJEmSZpXpJC1eQ+lpig3AzeVpfwf8BFgGvHZ6TZMkSZIkSZIkSbPJlAfizszNEfHzwEuAXwXuAYaBfwD+PjO3taWFkiRJkiRJkiRpVphy0iIifhn4XmZ+mNLA25XzDoqI387MT023gZIkSZIkSZIkaXaYzuuhvg48vs68dcDHplG3JEmSJEmSJEmaZVp60iIiPg2cOP4r8M8RsbNG0aOAO6bXNEmSJEmSJEmSNJu0+nqo9wH/t/zvNcCtwOaqMvuAL1P1yihJkiRJkiRJkqTJtJS0yMz/Av4LICIALsnM2zvQLkmSJEmSJEmSNMtMeUyLzHzpZAmLiPj/plq3JEmSJEmSJEmafVp9PdSEiDgS+CvgV4AFlMa4oPxzkFJCZM402ydJkiRJkiRJkmaJKT9pAVwO/Brwz8BtwE3A3wA/ppS4+K1pt06SJEmSJEmSJM0a00laPAN4fWb+MfD3wO7MfB3w88BXgd+cfvMkSZIkSZIkSdJsMZ2kxSJgQ/nfPwB+DiAzx4APUnptlCRJkiRJkiRJUlOmk7S4Ezi+/O8fAgdFxHHl33cAh06nYZIkSZIkSZIkaXaZTtLiE8B7I+IlmXkf8H3g0oj4VeCNwK2tVhgRZ0XEtibKrYmI6yJie0TcFRGvi4ioKvP0iPh2ROyIiNsi4vdq1HN2RHw/InZGxE0RcUarbZYkSZIkSZIkSe0xnaTFJZQSF6eXf/9D4JeBr1Ea1+K1rVQWEU8DPk5pEO/Jyh1GacyMBM4BrgDeCbymoszjgWuBnwLPBa4B/i4ifquizCnAp4F/pzT+xs3AZyPiKa20W5IkSZIkSZIktcfcqS6YmXuBP6r4/fry66EeB/wwM7c2U09ELAAuoJQEGQHmN1jklZTafVZm7gC+WK7jDRFxWWbuAV4P3AG8IDMTuDYiVgBvpZSoALgI+Epmvqr8+7URcQylp0TOaqbtlcbGkju2jLBp6ygrlw5y7PIhBgYeyb/s3r2Pm+8dZuPWUQ5fOsgTj1jG/PlzJubv2LmbWzZuY9PWXaxcuoA1q5awaOH8ppefbP7o6F6+f98wG7fuYtXSBTzx8GUMDs5tum5NrtGxL5Jm2tqp7amsd9H8uezet4/lQwsa1t9se/buHWPDfcNs2jrK8qEFjJGT1j8e9w/u2M3BC+exe+8Yiwfn7dcu4IA2H7JoAXMG4L7hA9sz3tYtI7uYP2eAHbv3TZSprKt6WmX5w5YM1q2/1X0y1fIzqV1trVUPHHgMmjl2tfb/7Zu389MtIxy8aB6ZsHn7Lg5dvICVSxfwqIMbt3lsLLnrwRHu37aL4Z17GJo/hwVz57B88XyOPmTydQ7Om8PBi+bxuJVLmTt34IByk233eHxt3t54OxvV2+4Y6vU4hQP7c+V2VC5z2JJB5s6BjcO7GNm9l2MOGeK4Q1vf3nrtuOvBETZt3cWO3Xs5ZGgBW0d3MzR/Lgls2b6r7jlybCz56QMj3Du8gwVz5jCyey/HLh9iLOH+ba0dl6kcz6leJ1ox3Tgbv9bcNzzK4csWsvrwA/thUbTa1kb7pnr+0Qcv4q6Hdux3bhm/dlXO60Z/rm7bUcsW8oNNW6d8nBrdO7e6r45YMsgtG7dO3GuvXrWUe7eN1m3v41cu4e7hnVPaf71+Lm21rdVxftCiudz78OT1Tfd+uN686rZM5zhOZrK2VbbhqIMXMjh3Dpu37+LwZYPsG3vkXF4dc+P77YiDBnl4ZA/3bW2+7+x3fVu8gJ1793H3QzsnXb6X4nRk5y42bNw+8T199arFDC1cMNPNUhc8vHOUH20cmTj2J64a4qCFgzPdLKlnTff7QaN7ruprXTP3snc+uIM7t4wwOH+ABXNK38ePOmj/+9jK+9rxdWzaOsqCuQMMj+5m+dDgAde7yr8vBMH2XbtZvGA+u/eOccRBj7Sz1TY3+rvGVPdzO45VJ+qactKilnKi4jstLvYs4A2UnsxYTsUTE3WcBlxXTliMuwp4M/Bk4PpymY+XExaVZX43Io4AHgKeBpxfVffngEsiYk5m7mt2A8bGkms3bOTCK29kdM8Yg/MGuPSckzl99SoGBoLdu/dx1c338tbP3TIx/+3PWcPZa49g/vw57Ni5m8/fsom3Xl0x/6w1nLFmJYsWzm+4/GTzx8aSq79/3wF1n/XEwxkcnNuwbk2u0bEvkmba2qntqVXv+aecwCfX38XrTn983fqbbc/evWNcddM9vPmqW5qqfzzu//rrt/H8dUdz+dduq7nc/LnBH/3z/xww73eefDQfu+FOHtqxe6I9ANdu2Mi7r/3BAXVees7JB9Q1Pu2Sz//vAeUvOPWEA+qf6jHqtxidaj0feOHPsXtv1qwbJj921fv/327ZyGs+dSMnHraYF/zCMVx8zYaJ8heduZojDhrh6Y85rG6bx8aSr926ids3j3DpV36033Efmj+HIw7ezimPXVlznZVlf/rACM9affjEzVGz233hr53IgjkD/Pm1PyxMDPVDnNbrz5eeczK//viVfPkHm/Zb5qIzV/Oh//gxd27ZOaXtrdeOoQUD/O+927jsukfa8OrTTmThvAH+7N9+WPccCQf2g4MXzefFTz1mv7qaaedUjudUrxOtmG6c1brWvOPsNZx90pGFS1y02tZG+6Z6/jHLF/KqU07Yr/7Ka9c7zl7D+79225TjuxW12v7256zhr7/+yPpbOU6jo3snvXdudV/9+hMO5bTHH3FAfX/974+0r7q91b83u//64VzaSltrxflFZ67mX759Jz+6f3vN+qZ7PwzUnHfaYw/j6u/fO9GWY5Yv5JXPOGG/71iduqcer3dsLCf2R+X5u9a5vDrGLjpzNd+9/QGefPyh+93XNOo7tdpTfS6oXr6X4nRk5y6+cMv9B/TfZ685zMRFn3t45yhfvmXzAcf+19esMHEhTUG7vh/Uu+dq9L2l2XvZ5UPzWD/w0AH30O//2m3s3psHrKP0feV/edUpJ0xc78bXNf696pPr76r5/arVNk/2t6VGy7Tje+ZUrtPTrWvK37AiYiwi9k32abKq7wLHZebllF751MiJwI+rpt0+Pi8ihoAjJitDaQDxuXXKLAQe1VzTS+7YMjJxAABG94xx4ZU3cseWEQBuvnd44oZ1fP5bP3cLN987DMAtG7dNXAwn5l99C7ds3NbU8pPN//59wzXr/v59jZdVY42OfZE009ZObU+tei//2m2csfbISetvtj0b7hueuKg0U/943J+x9siJPy7WWu7mu4drzrvsutt47pOO2q89422tVWetusan1Spfq/5W98lUy8+kdrW1Vj033z1ct+5Gx656/48nD/7vLz964ov9ePmLr9nAtp37Jm3zHVtGuPnu4YmExfiyl113Gw+M7Obmu4frrrOy7G33b2fDfcP7lWtmuy/9yo/YsmN3oWKoH+K0Xn++8Mob2XDfgcfh4ms2cMbaI/cr18r21mvHtp37Jm58x6e/76s/4oGR/Y959TmyVj947pOOOqCuZto5leM51etEK6YbZ7WuNW++6pb9+mFRtNrWRvumev4Za488oP7Ka9ebr7plWvHdilptH7/GN7Pt1RrdO7e6r/7PU46rWV9l+6rbW/17s/uvH86lrbS1VpxffM0G/u8vP7pufdO9H657Dbh3/7acsfbIA75jdeqeerzeyv1Ref6udS6vjrGLr9nAbz356APuaxr1nVrtqT4XVC/fS3G6YeP2mv13w8btM9wyddqPNo7UPPY/2li8OJV6Qbu+H9S752r0vaXZe9lF8+fVvIc+Y+2RNdcx/n2l8npX/b2q3verVttc+b2z1WXa8T1zKtfp6dY1nf8WdmGNz1spjTfxIPCiZirJzHsy8+EW1rsUqB6se1vFvKVV06Za5gARcV5ErI+I9Zs3b56Yvmnr6MQBGDe6Z4z7t40CsLHO/E1bR8vL76ozf1dTy082f+M069bkGh37bqsXo9BcWzu1PfXqjZi8/mbbc99wa/WPx/34/HrLjVWlUSvnRezfnk0N6qxV11gyaRtqbW+rx6hoMQpTP5c2q1Y9Y1l7Pzdz7Ort/5279tYsP7J776Rt3rR1tG57xpKJV/FMtj3jZTcOT15usvVMtp3V7e10DPVDnE7Wnyc7R1X+3sr21mvHSJ24nOx8Vq8fNNMnWmlbo34xletEK6YbZ/WOY2U/7KbJrvmttrXRvqme38y1azrx3YrJYqfy92aPU6N751b31UMje5pqX6Pfm9l//XAubaWt9eJ85+69deub7v1wvXnV36mmev5sZLK2Ve6PZs7l1TH2wPbasT9Z32nU/2ot31txOvn5QP2riMd+suu+VATT/XtUtVbuuRpdd5u9lx3ZXfu7VMTk19PK613196p61+RW2zw+f7Lv8u24xrbzOj3duqactMjMv8rMy6o+78zMZwKfBJ451bobCOo/kTHGIwN5V5eJFsscIDOvyMx1mbluxYoVE9NXLh1kcN7+u3Jw3gCHLSk9Nnh4nfkrlw6Wl19QZ/6CppafbP6qadatyTU69t1WL0ahubZ2anvq1Zs5ef3NtufwZQtbqr8y7idbrvpptcp54y+fG69/ZYM6a9U1Pq1eG2ptb6vHqGgxClM/lzarVj1zovZ+bubY1dv/ixbMrVl+aP7cSdu8culg3fYMBAwETR3zgYBVyyYvN9l6JtvO6vZ2Oob6IU4n68+TnaMqf29le+u1Y2iwdlxOdj6brB9M5bhM5XhO9TrRiunGWb3jWNkPu2mya36rbW20b+rNr/698to1nfhuxWSxU/l7s8ep0b1zq/vqkKF5TbWv0e/N7L9+OJe20tZ6cb5w/ty69U33frjevFVN9pFO3VMftmTwgP3R6FxeHWMrFteO/cn6TqP+V2v53orTyc8H6l9FPPaTXfelIpju36OqtXrP1Y572aH5tb9LVV7Xas2rvN7V+l7VyvW5UZsn+y7fjmtsO6/T062rUy/g/TRwdofqHgaWVE1bUjFva9W0cYsrygw3UaZpxy4f4tJzTt4vGC895+SJAVKeeMQy3v6cNfvNf/tz1rD2iGUArFm1hLefVTX/rDWsWbWkqeUnm//Ew5fVrPuJhzdeVo01OvZF0kxbO7U9teo9/5QT+PzN90xaf7PtWX34Ut5x9pqm6x+P+2tuuofzTzmh7nJrj1pWc94Fp57AZ753937tGW9rrTpr1TU+rVb5WvW3uk+mWn4mtauttep54lHL6tbd6NhV7//3/napnr/9xk+46MzV+5W/6MzVLFk4Z9I2H7t8iCcetYwLf+3EA477oUPzWXvUsrrrrCx7wmGLWX34sv3KNbPdF/7aiSxfNL9QMdQPcVqvP196zsmsPnzpActcdOZqPn/zPfuVa2V767VjyeAcLjh1/za8+rQTOXRo/2NefY6s1Q/+9b/vPqCuZto5leM51etEK6YbZ7WuNe84e81+/bAoWm1ro31TPf+am+45oP7Ka9c7zl4zrfhuRa22v/05+6+/lePU6N651X318W/9tGZ9le2rbm/1783uv344l7bS1lpxftGZq/nIN35St77p3g/XvQYcsWy/tlxz0z0HfMfq1D31eL2V+6Py/F3rXF4dYxeduZpPffeuA+5rGvWdWu2pPhdUL99Lcbp61eKa/Xf1qsUNllSvO3HVUM1jf+Kq4sWp1Ava9f2g3j1Xo+8tzd7L7ti9p+Y99OdvvqfmOsa/r1Re76q/V9X7ftVqmyu/d7a6TDu+Z07lOj3dumL/sarbIyIuAl6ZmYe1uNzbgD/JzLp3ARFxPXBHZr6wYtrPA+uBX8jM70TEvcBHM/ONFWWeRymZsopSYmM78IeZeUVFmdcAbwMOajQQ97p163L9+vUTv4+Phn7/tlEOW3LgaOi7d+/j5nuHJ0ZLX3vEsv0Gut6xcze3bNzGpq27WLl0AWtWLWHRwvlNLz/Z/NHRvXz/vuGJup94+DIGB+c2Xbcm1+jY88gTPF1VHaPQVFubKjMV4/Vu2jrKovlz2LNvjEOGFjSsv9n27N07xoZynB8yNJ8kWT5J/eNx/9CO3Ry0cB579o4xNDh3v3YBB7T54EULmDNQesVUdXvG2/rgyC7mzRlgx+59rFw6uF9dldsxPq2y/GFLBuvW3+o+abF8IeK0XfFXqx448Bg0c+xq7f/bN2/np1tGOHjRPDJh8/ZdHDq0gJXLFvCogxu3eWwsuevBETZv28Xwzj0snD+HwblzWL54PkcfMvk6B+fN4eBF83jcyqUHDIzZaLtXLC7F1wPbG29no3rbPVhmUc+l0FycwoH9uXLfVi6zYvEgc+fAxuFd7Ni9l6MPGeK4Q1vfp/XacdeDI2zaWqr74EXz2b5rD0Pz5zIGbNm+u+45cmws+ekDI9w3vIP5c+Ywsnsvxy4fYixh8/bWjv1UYmaq14lWTDeWx681G4dHWbVskNWHL6vuh4U4l0JTbd1Po31TPf/ogxdx10M79ju3jF+7Kud16pwxWduPWraQH2za2vS2V2t079zqvjpiySC3bNw6ca+9ZtVS7t02Wre9j1+5lLuHd05p/822a/5+cb50kIOG5nHf8OT1Tfd+uN686j43neM4mcnaVtmGIw9eyODcOTwwsotVSwfZN/bIuXy/mKvYb4cvG+ThkT1s3Np836lsz6FDCxjdu497Hto56fK9dM0f2bmLDRu3T5wPVq9a7CDcs8TDO0f50caRiWN/4qqh6kG4CxOn4yKC53/4+hlokWbaJ1/+NOr8fbcQ13yY3veDZu65qq91zdzL3vngDu56cIT5cwcmvo8fddD+97GV97Xj67h/2yjz5gywbXQ3hwwtOOB6N76uLSO7CILtu/aweME89uwb4/Blj7Sz1TY3+rvGVPdzq/u9A3XVrHzKSYuIuLrG5AFKg2CfBPxVZr6mxTrfRuOkxSXAyykN3j1SMe0PgSMyc3dE/CNwMnDyePJhfFpmPrH8+zeBbZn5GxV1fwMYzswzG7W13kVCqqEwFwlpEsapiq5wXwylGjyXqhcYpyo6r/nqBYWLU5MWs1cvJC2kSdSM07m1JjZpKQeOCZHAXcCHgY9Mo+4JEfFoYEVmfqs86YPAq4AvRsRfUkqQvAF4fWbuLpd5D/Bd4FMR8bfAacDvAudUVP3nwBci4grgs8ALgacCv9yOdkuSJEmSJEmSpNZMOWmRmb/axnZM5i3ASyhnXTLzvog4DbiM0uueNgFvysz3VLTtpog4E3g3pYTEXcBLM/NTFWW+GBEvAt4KvBi4FTg7M2/ozmZJkiRJkiRJkqRKLSUtIuKQVspn5oMtln8bpTElKqedC5xbNW098IsN6voS8KUGZT4OfLyVNkqSJEmSJEmSpM5o9UmLBzjwlVCTcTRnSZIkSZIkSZLUlFaTFr/HI0mL5ZTGhbgW+FdgY3nas4GzgT9pTxMlSZIkSZIkSdJs0FLSIjM/Ov7viPg88OHMPL+q2L9ExLuBFwAfmnYLJUmSJEmSJEnSrDAwjWVPAa6pM+864MnTqFuSJEmSJEmSJM0y00la3AWcUWfe7wC3TaNuSZIkSZIkSZI0y7Q6pkWlPwM+GhGPpjSuxQPAYcBvAr8EPHf6zZMkSZIkSZIkSbPFlJMWmfmxiNgJvB64DAhKg3R/C3hWZn61PU2UJEmSJEmSJEmzwXSetCAzPwV8KiIWAgcBD2XmaDsaJkmSJEmSJEmSZpdpJS0iYi5wIrCA0pMWh0dEAIuAp2bmX0y/iZIkSZIkSZIkaTaYctIiIp4OfAJYVafICGDSQpIkSZIkSZIkNWVgGsu+C3gYeB7wWeAzwBnAX1Ma2+JZ022cJEmSJEmSJEmaPabzeqiTgXMz86qIWAq8KjP/Dfi3iBgALgJ+vQ1tlCRJkiRJkiRJs8B0nrQA2FT+eSuwupysgNJTFydNs25JkiRJkiRJkjSLTCdpsQH4lfK/f0hpMO4nlX8/GBicRt2SJEmSJEmSJGmWmc7roS4DPhYRyzPzjyPiWuDjEfEJ4Fzg+nY0UJIkSZIkSZIkzQ5TftIiM/8JeD5wX3nS7wH3An8K3Am8YtqtkyRJkiRJkiRJs8aUn7SIiOcC/5GZnwbIzE3AKe1qmCRJkiRJkiRJml2mM6bFh4FfbldDJEmSJEmSJEnS7DadpMUm4NB2NUSSJEmSJEmSJM1u0xmI+5+AyyLiN4AfAPdXzc/MfN806pckSZIkSZIkSbPIdJIW7yz/PLP8qZaASQtJkiRJkiRJktSUKSctMnM6r5aSJEmSJEmSJEnaz5STFhHxU0pPU9QyBmwHfgx8IDP/farrkSRJkiRJkiRJs8N0npb4F+BwYBHwdeATwHXAPOBYSuNcHA58NSJOn14zJUmSJEmSJElSv5tO0mIFcANwXGa+LDPfmJm/Dzwa+ArwcGb+IvAR4C2TVRQRvx8Rt0XEzoi4ISKe2qD8CyLilogYjYgfRsTLq+bnJJ+XlMtERGytMX/9NPaJJEmSJEmSJEmaoukMxP3bwAszc2flxMzcHRGXU3oS4w+BTwH/p14lEfFi4EPA24HvAq8CvhQRJ2XmT2uUfyHwT8CVwGuAE4G/jIhDMvPPy8VqJT3+Ejge+Lfy78cBS4CXAD+qKLd9so2WJEmSJEmSJEmdMZ2kxS7g6DrzjgH2lv89B9hdq1BEBKVkxRWZeXF52leAW4FXA+fXWOwNlJ7w+J3MTEoJjt3A+yLiiszckpnfqlrP2cAvAadk5v3lyWspjb3x6czc0cT2SpIkSZIkSZKkDprO66E+CbwrIl4UEUsBImJpRPwu8OfAlRExBPwBUO+VS4+hlOC4enxCZu4BvgDUGwfjRODL5YTFuP8EFgK/Ul04IhYA7wM+kZlfr5i1FviJCQtJkiRJkiRJkophOk9avBY4FPgHICNiD6VBuJPS65v+BHgO8Azg1+rUcWL554+rpt8OPDoi5mTmvqp5P+PAJzyOK/88tsY6/gA4Enhd1fS1wK6I+DKlpzBGgP8HvKmcOJEkSZIkSZIkSV005SctMnNXZr4QeCzwcuBtwEuBx2bmS8pPMHwZODIz6z1psbT8c1vV9G3ltg3VWObjwIsi4mURcVBEPJnSkx1ZXT4iBii9YuqTmXlXVT1rKQ0afjWlpzr+itJ4Gh+ut80RcV5ErI+I9Zs3b65XTJoxxqh6gXGqXmCcquiMUfUC41S9wDhVLzBOVXTGqNptOq+HAiAzb8vMj2TmuzLzY5n5k4p5Wxq8finGi9aZPlZjmT8D/g74W+Ah4FrgXeV51es6jdLg25fVqOelwFMy8wOZ+Y3MfCelxMu5EXFMrcZm5hWZuS4z161YsaL+VkkzxBhVLzBO1QuMUxWdMapeYJyqFxin6gXGqYrOGFW7TTtpMU3D5Z9LqqYvppSwGKleIDN3Z+YfAMuA1cARlMa0CODBquJnUxq34oAnPTLzvzLz5qrJ15breWJrmyFJkiRJkiRJkqZrppMWt5V/Hl81/Xjg1qrBtgGIiFMi4lczc1tm/m9m7qL0qieAG6uKnw58pkYdy8qvl3p01ayF5Z8PtLIRkiRJkiRJkiRp+oqQtPgZpSciAIiIecCzgevqLPM7wOUV5QN4BXAXcHPF9EMpDdD9rRp17Ab+mtJ4F5WeR+mVU99vbTMkSZIkSZIkSdJ0zZ3JlWdmRsS7gA9ExEPAfwF/BBwKvA+g/DTEiswcTz5cAfxeRPwVpUG0/w/wTOAFmbmvovo15Z+31ljvzoi4FPjTiNgCXA/8GnAhcEFmHvBaKkmSJEmSJEmS1FkzmrQAyMwPRsRC4ALg1ZRe8fTMzLy9XOQtwEsoD86dmesj4reBS4DzgB8Bz8/MT1VVfVj558N1Vv0WSmNg/D7wRuAO4A8z84rpb5UkSZIkSZIkSWrVjCctADLzvcB768w7Fzi3atpngc82qPNK4MpJ5u8D3lP+SJIkSZIkSZKkGTbTY1pIkiRJkiRJkiQBJi0kSZIkSZIkSVJBmLSQJEmSJEmSJEmFYNJCkiRJkiRJkiQVgkkLSZIkSZIkSZJUCCYtJEmSJEmSJElSIZi0kCRJkiRJkiRJhWDSQpIkSZIkSZIkFYJJC0mSJEmSJEmSVAgmLSRJkiRJkiRJUiGYtJAkSZIkSZIkSYVg0kKSJEmSJEmSJBWCSQtJkiRJkiRJklQIJi0kSZIkSZIkSVIhmLSQJEmSJEmSJEmFYNJCkiRJkiRJkiQVgkkLSZIkSZIkSZJUCCYtJEmSJEmSJElSIZi0kCRJkiRJkiRJhWDSQpIkSZIkSZIkFYJJC0mSJEmSJEmSVAgmLSRJkiRJkiRJUiGYtJAkSZIkSZIkSYVQiKRFRPx+RNwWETsj4oaIeGqD8i+IiFsiYjQifhgRL69R5paIyKrPA1Vlzo6I75fXe1NEnNHubZMkSZIkSZIkSc2Z8aRFRLwY+BDwceB5wMPAlyLiuDrlXwj8M7ABeA7w18BfRsQbKsrMB04EXg88teLzzIoypwCfBv4d+E3gZuCzEfGUtm6gJEmSJEmSJElqytyZXHlEBPB24IrMvLg87SvArcCrgfNrLPYG4AbgdzIzKSU4dgPvi4grMnML8ARgHvC5zPxhndVfBHwlM19V/v3aiDgGeCNwVnu2UJIkSZIkSZIkNWumn7R4DHAMcPX4hMzcA3wBOL3OMicCXy4nLMb9J7AQ+JXy72uBUeC2WhVExELgaZXrLfsccFpEzGltMyRJkiRJkiRJ0nTNdNLixPLPH1dNvx14dJ3kwc+Ao6umjb9K6tjyz7XAFuCTEbE1IoYj4iMRsaQ8/3hKT5nUWu9C4FEtbYUkSZIkSZIkSZq2mU5aLC3/3FY1fRultg3VWObjwIsi4mURcVBEPBn4cyAryq8FVgE3Ac8G3kxpvIyrmlhv5fz9RMR5EbE+ItZv3ry5waZJ3WeMqhcYp+oFxqmKzhhVLzBO1QuMU/UC41RFZ4yq3WY6aRHln1ln+liNZf4M+Dvgb4GHgGuBd5Xn7Sj/fB3wS5l5SWZ+MzPfD/wBcEpEPH2K6yUzr8jMdZm5bsWKFZNvmTQDjFH1AuNUvcA4VdEZo+oFxql6gXGqXmCcquiMUbXbTCcthss/l1RNX0wpcTBSvUBm7s7MPwCWAauBIyiNaRHAg+Uy/5OZ36pa9Nryz5MarLeyXZIkSZIkSZIkqUtmOmkxPlD28VXTjwdurRpsG4CIOCUifjUzt2Xm/2bmLkqvgwK4MSLmRsS5EfFzVYsuLP98gNLYFWN11rsduHeK2yNJkiRJkiRJkqaoCEmLnwFnj0+IiHmUxqG4rs4yvwNcXlE+gFcAdwE3Z+Ze4GLgbVXLPQ/YA9yQmTuB6yvXW/Yc4N8zc9+UtkaSJEmSJEmSJE3Z3JlceWZmRLwL+EBEPAT8F/BHwKHA+wAi4tHAiorXPV0B/F5E/BVwNfB/gGcCL6hINrwT+HBEXAZcAzwZeCtweWbeWS7z58AXIuIK4LPAC4GnAr/cwU2WJEmSJEmSJEl1zPSTFmTmB4HXAi8CPg0cBDwzM28vF3kLcENF+fXAbwOnAZ8Hfh54fmZ+sqLMFcBLgWdQSlqcB1wC/GlFmS+W1/mrlJIWa4GzM3NiXZIkSZIkSZIkqXtm9EmLcZn5XuC9deadC5xbNe2zlBINk9X5UeCjDcp8HPh40w2VJEmSJEmSJEkdEzXGulYTImIzcGfDgq07lNJg4WpdUffdA5l5erdX2qEYLeo+7pTZtL39FKe9YjbFVyvq7ZcZiVHo6zjt5xicqW2bjefSIsdRkdsGxulMK3p89IJO7cMiXvONl9mrl+5NZ3OczuZth4LFaZuu+bP9mE5Hr+27mnFq0qJgImJ9Zq6b6Xb0Ivdd5822fTzbtlfdZXzV5n7pnn7e1/28bUVT5H1d5LZB8dvX79z/0zeb9uFs2lbtr5eOfS+1td1m87ZDf25/P25Tt/TLvpvxMS0kSZIkSZIkSZLApIUkSZIkSZIkSSoIkxbFc8VMN6CHue86b7bt49m2veou46s290v39PO+7udtK5oi7+sitw2K375+5/6fvtm0D2fTtmp/vXTse6mt7Tabtx36c/v7cZu6pS/2nWNaSJIkSZIkSZKkQvBJC0mSJEmSJEmSVAgmLSRJkiRJkiRJUiGYtJAkSZIkSZIkSYVg0kKSJEmSJEmSJBWCSYspOv300xPw46eZz4wwRv20+JkRxqmfFj4zxjj108JnRhijflr8zAjj1E8LnxljnPpp4TNjjFM/LXxmhDHqp8VPTSYtpuiBBx6Y6SZIkzJG1QuMU/UC41RFZ4yqFxin6gXGqXqBcaqiM0bVDiYtJEmSJEmSJElSIZi0kCRJkiRJkiRJhWDSQpIkSZIkSZIkFcLcmW6AmjM2ltyxZYRNW0dZuXSQY5cPMTAQM90sSW1mX1c3GGezl8des4FxPnt4rNVpxphUbPZRqX+ZtOgBY2PJtRs2cuGVNzK6Z4zBeQNces7JnL56lSdjqY/Y19UNxtns5bHXbGCczx4ea3WaMSYVm31U6m++HqoH3LFlZOIkDDC6Z4wLr7yRO7aMzHDLJLWTfV3dYJzNXh57zQbG+ezhsVanGWNSsdlHpf5m0qIHbNo6OnESHje6Z4z7t43OUIskdYJ9Xd1gnM1eHnvNBsb57OGxVqcZY1Kx2Uel/jYjSYuIODUivh0ROyPizoi4OCLmlOdFRLwpIu6KiB0R8ZWIeFzV8gsi4n0RsTEitkXEpyPiiKoyB0fERyNiS0Q8FBEfiYilVWUeFRGfjYjhiNgUEX8REfM7vwdas3LpIIPz9j9Ug/MGOGzJ4Ay1SFIn2NfVDcbZ7OWx12xgnM8eHmt1mjEmFZt9VOpvXU9aRMQvAv8G/AB4NvAB4HXAm8tF3lr+93uA3wGWAddFxLKKaj4EvBh4PfBS4CTgi+OJj7J/BX4V+APgj4GzgH+uaMcC4MvAMcCLgEuAVwKXtmtb2+XY5UNces7JEyfj8ff0Hbt8aIZbJqmd7OvqBuNs9vLYazYwzmcPj7U6zRiTis0+KvW3mRiI+13AlzPz3PLvX4uI5cAzIuJS4E+At2Xm5QAR8U3gTuBlwKUR8WhKCYsXZuYny2VuAm4FngN8JiKeATwDeEpmfrtc5m7gqxHxpMz8HvBC4DHAcZl5d7nMTuBDEXFJZm7q+J5o0sBAcPrqVTzu/Kdz/7ZRDlsyyLHLhxxYSOoz9nV1g3E2e3nsNRsY57OHx1qdZoxJxWYflfpbV5MWEbEC+EXg7Mrpmfn68vxfAxYDV1fMeygi/gM4ndJTEKeUZ32+osxtEbGhXOYzwGnA/eMJi7KvA1vLZb5XLvO98YRF2VXAR4BTqXgqowgGBoLjVyzm+BWLZ7opkjrIvq5uMM5mL4+9ZgPjfPbwWKvTjDGp2OyjUv/q9uuhnggEMBIR10TEaETcHxFvi4gB4MRyuZ9ULXd7xbwTgY2ZOdKgzI8rZ2bmGHBHgzJbKCU2TkSSJEmSJEmSJHVVt5MWK8o/Pwb8EHgW8EFKY1i8FlgK7MrM3VXLbSvPo/xzW426O1FmPxFxXkSsj4j1mzdvrlVEmlHGqHqBcapeYJyq6IxR9QLjVL3AOFUvME5VdMao2q3bSYt55Z9fyszXZubXM/NtlAbWfnO5PVljuQDGKv7drTL7ycwrMnNdZq5bsWJFrSLSjDJG1QuMU/UC41RFZ4yqFxin6gXGqXqBcaqiM0bVbt1OWmwv/7y2avpXKI1l8TCwICLmVc1fDAyX/z0MLKlRdyfKSJIkSZIkSZKkLul20mJ8DIn5VdPHkxR7KD3pcFzV/OOBW8v/vg1YFRELG5Q5vnJmecyMYxuUWU7p1VC3IkmSJEmSJEmSuqrbSYv/Be4Bfrtq+rOBe4FPAKPA2eMzIuJg4FeA68qTrgPmAGdWlDkBWF1V5vCI+P8q1vEMSgmJyjLrIuKoijJnU0qcfGMqGydJkiRJkiRJkqZubjdXlpljEfFG4B8i4m+ATwOnAS8B/jAzt0bE+4F3RMQY8CPgTcBW4CPlOn4SEZ8C/jYilgEPAX8O3AxcVV7V14BvA5+JiNdSepLjPcAXMvO/y2X+BXgLcG1EvAU4AvgL4IrM3NjJ/SBJkiRJkiRJkg7U1aQFQGZ+LCL2AG8EXgr8DPiDzLyiXOSNlAbC/hNK40tcD7wkMyvHmXgp8D7g3ZSeFvkqcH5m7iuvIyPiLOD9wBXALuBzwKsr2rEjIk4DPgD8E6VxLD5YXr8kSZIkSZIkSeqyrictADLzXyg96VBr3l7g9eVPveVHgPPKn3pl7gee36AdPwZOb6LJkiRJkiRJkiSpw7o9poUkSZIkSZIkSVJNJi0kSZIkSZIkSVIhmLSQJEmSJEmSJEmFYNJCkiRJkiRJkiQVgkkLSZIkSZIkSZJUCHNnugFqzthYcseWETZtHWXl0kGOXT7EwEDMdLMkTYP9Wu1mTKmS8SBNjX1HRWZ8St1hX+sNHiepf5m06AFjY8m1GzZy4ZU3MrpnjMF5A1x6zsmcvnqVJ2OpR9mv1W7GlCoZD9LU2HdUZMan1B32td7gcZL6m6+H6gF3bBmZOAkDjO4Z48Irb+SOLSMz3DJJU2W/VrsZU6pkPEhTY99RkRmfUnfY13qDx0nqbyYtesCmraMTJ+Fxo3vGuH/b6Ay1SNJ02a/VbsaUKhkP0tTYd1RkxqfUHfa13uBxkvqbSYsesHLpIIPz9j9Ug/MGOGzJ4Ay1SNJ02a/VbsaUKhkP0tTYd1RkxqfUHfa13uBxkvqbSYsecOzyIS495+SJk/H4e/qOXT40wy2TNFX2a7WbMaVKxoM0NfYdFZnxKXWHfa03eJyk/uZA3D1gYCA4ffUqHnf+07l/2yiHLRnk2OVDDiwk9TD7tdrNmFIl40GaGvuOisz4lLrDvtYbPE5SfzNp0SMGBoLjVyzm+BWLZ7opktrEfq12M6ZUyXiQpsa+oyIzPqXusK/1Bo+T1L98PZQkSZIkSZIkSSoEkxaSJEmSJEmSJKkQTFpIkiRJkiRJkqRCMGkhSZIkSZIkSZIKwaSFJEmSJEmSJEkqBJMWkiRJkiRJkiSpEExaSJIkSZIkSZKkQjBpIUmSJEmSJEmSCsGkhSRJkiRJkiRJKgSTFpIkSZIkSZIkqRC6nrSIiOURkTU+ny7Pj4h4U0TcFRE7IuIrEfG4qjoWRMT7ImJjRGyLiE9HxBFVZQ6OiI9GxJaIeCgiPhIRS6vKPCoiPhsRwxGxKSL+IiLmd34vSJIkSZIkSZKkanNnYJ0nlX8+E9haMX1L+edbgdcDrwPuAN4MXBcRT8jM4XKZDwFnAa8BtgN/DnwxIn4+M/eVy/wrcDzwB8Ai4C+BVcAZUEp8AF8GdgIvAo4G3l0u+0ft21xJkiRJkiRJktSMmUharAU2ZeaXq2dExBLgT4C3Zebl5WnfBO4EXgZcGhGPBl4MvDAzP1kucxNwK/Ac4DMR8QzgGcBTMvPb5TJ3A1+NiCdl5veAFwKPAY7LzLvLZXYCH4qISzJzU+d2wYHGxpI7toywaesoK5cOcuzyIQYGoptNkFSH/VPtZkypiIxLqRjsi+o0Y0xqzH7SGzxOUv+aqaTFzXXmPQVYDFw9PiEzH4qI/wBOBy4FTinP+nxFmdsiYkO5zGeA04D7xxMWZV+n9GTH6cD3ymW+N56wKLsK+AhwKvDPU9y+lo2NJddu2MiFV97I6J4xBucNcOk5J3P66lWebKUZZv9UuxlTKiLjUioG+6I6zRiTGrOf9AaPk9TfZmIg7rXAooi4PiJGI+LuiPjTiAjgxHKZn1Qtc3vFvBOBjZk50qDMjytnZuYYpddNTVZmC6XExol00R1bRiZOsgCje8a48MobuWNL9SZK6jb7p9rNmFIRGZdSMdgX1WnGmNSY/aQ3eJyk/tbVpEVEDABPAB4LfBh4FvAvlMakeAuwFNiVmburFt1Wnkf557Ya1XeiTHX7z4uI9RGxfvPmzbWKTMmmraMTJ9lxo3vGuH/baNvWodmhUzE6m9k/22+2x6kx1RtmW5wal71ntsXobNFvfdE4LZ5+i7F2ME5VrYj9xDg9UBGP02xmjKrduv2kRVAaCPupmfkPmfn1zHwtcAWlgbcDyDrLjVX8u1tl9pOZV2Tmusxct2LFilpFpmTl0kEG5+1/KAbnDXDYksG2rUOzQ6didDazf7bfbI9TY6o3zLY4NS57z2yL0dmi3/qicVo8/RZj7WCcqloR+4lxeqAiHqfZzBhVu3U1aZGZ+zLza5n546pZ1wKLgBFgQUTMq5q/GBgu/3sYWFKj+k6U6Ypjlw9x6TknT5xsx9/Dd+zyoW42Q1IN9k+1mzGlIjIupWKwL6rTjDGpMftJb/A4Sf2tqwNxR8QRlJ60+GxmVj4rtLD88yFKTzocB/yoYv7xwK3lf98GrIqIhZm5s6rMNyvK/GLVugeAY4F/qihzfFWZ5ZReDXUrXTQwEJy+ehWPO//p3L9tlMOWDHLs8iEHDpIKwP6pdjOmVETGpVQM9kV1mjEmNWY/6Q0eJ6m/dTVpASygNJbFEPC+iunPo5Sk+Ex5/tnAXwBExMHArwAXl8teB8wBzgSuLJc5AVgNvK2izBsi4v/LzO+Upz2DUkLiuooyfxMRR2Xm3eVpZwN7gG+0Y2NbMTAQHL9iMcevWNztVUtqwP6pdjOmVETGpVQM9kV1mjEmNWY/6Q0eJ6l/dTVpkZk/jYh/AS6JiDHgB8BvU0panJ2Z2yPi/cA7yvN/BLwJ2Ap8pFzHTyLiU8DfRsQySk9n/DlwM3BVeVVfA74NfCYiXgvMA94DfCEz/7tc5l8oDf59bUS8BTiCUqLkiszc2Mn9IEmSJEmSJEmSDtTtJy0AXkYpWfDHwOGUEhfPy8yry/PfSGkg7D+hNL7E9cBLMrNynImXUnpS492UxuX4KnB+Zu4DyMyMiLOA91Ma5HsX8Dng1eMVZOaOiDgN+AClV0YNAx8sr7+vjI0ld2wZYdPWUVYu9XE5CewXKg5jsb94PKXeZz9WPzCO28P9KBWbfVTqX11PWpTHoXgjdZIDmbkXeH35U6+OEeC88qdemfuB5zdoy4+B0xu3uneNjSXXbtjIhVfeyOiesYmBiU5fvcoTuWYt+4WKwljsLx5PqffZj9UPjOP2cD9KxWYflfrbwEw3QJ11x5aRiRM4wOieMS688kbu2DIywy2TZo79QkVhLPYXj6fU++zH6gfGcXu4H6Vis49K/c2kRZ/btHV04gQ+bnTPGPdvG52hFkkzz36hojAW+4vHU+p99mP1A+O4PdyPUrHZR6X+ZtKiz61cOsjgvP0P8+C8AQ5bMjhDLZJmnv1CRWEs9hePp9T77MfqB8Zxe7gfpWKzj0r9zaRFnzt2+RCXnnPyxIl8/B1/xy4fmuGWSTPHfqGiMBb7i8dT6n32Y/UD47g93I9SsdlHpf7W9EDcEXEl8DHg2vJg2WrB2Fhyx5YRNm0dZeXSQY5dPtSVgYEGBoLTV6/icec/nfu3jXLYku6tWyqqZvvFTPVbzS6PXbmED/6fJzG0YC4rlyzg6EOMs17lNXd6POf2j14+lvZjNdIL8W0ct8fAQPDrj1/JJ897CvcNj3L4soWsPnyp+1EqCPuo1N+aTloABwGfBR6OiH8B/jEzv9uRVvWZsbHk2g0bJwYIGs/+nr56VdcSF8evWMzxKxZ3fF1Sr2jUL2a636r/1Yuxow/xfwb1Mq+5U+M5t3/0w7G0H6ueXopv43j6xsaSL/9gU08cb2k2so9K/a3p10Nl5q8DRwHvBJ4KfDsibo2IN0fEsR1qX1+4Y8vIxEkUSgMDXXjljdyxZWSGWyapHvutOs0Ykx5hf+gfHkv1M+N7dvF4S8VmH5X6W0tjWmTmpsz8q8x8MvBY4KPA2cBPIuIbEfHSiHDEmyqbto5OnETHje4Z4/5tozPUIkmN2G/VacaY9Aj7Q//wWKqfGd+zi8dbKjb7qNTfpjQQd0QsBJ4E/Dyl5MUw8ADwl8BPI+IZbWthH1i5dHBiYKBxg/MGOGyJ+R2pqOy36jRjTHqE/aF/eCzVz4zv2cXjLRWbfVTqb00nLSJibkQ8OyL+Cbgf+EdgEHgZcHhmPpfS66NuBf6+E43tVccuH+LSc06eOJmOv2fv2OW+t1wqKvutOs0Ykx5hf+gfHkv1M+N7dvF4S8VmH5X6WysDcW+iNBj3zcBbgX/KzPsrC2TmaER8HXhF21rYBwYGgtNXr+Jx5z+d+7eNctiSQY5dPuTAQFKB2W/VacaY9Aj7Q//wWKqfGd+zi8dbKjb7qNTfWkla/APw/zLz+w3KXQa8e+pN6k8DA8HxKxZz/IrFM90USU2y36rTjDHpEfaH/uGxVD8zvmcXj7dUbPZRqX+1MqbFs4ATGhXKzIcz01FvJEmSJEmSJElSS1p50uJQYFunGtLvxsaSO7aMsGnrKCuX+siaVBT2TU2H8aMiMi6lYrFPqp8Z3+pXxnZv8DhJ/auVpMW7gfdFxFuAH1AajHs/mflguxrWT8bGkms3bOTCK29kdM/YxOBAp69e5clUmkH2TU2H8aMiMi6lYrFPqp8Z3+pXxnZv8DhJ/a2V10O9Dngs8GlgA7C5xkc13LFlZOIkCjC6Z4wLr7yRO7aMzHDLpNnNvqnpMH5URMalVCz2SfUz41v9ytjuDR4nqb+18qTFn3SsFX1u09bRiZPouNE9Y9y/bXRisCAfaZO6r5m+ORX259mhU/FTizHV+7p1DLsZl1JRFPkcaZ+cvYocl+1ifKtfGdu9weMk9bemkxaZ+Q+dbEg/W7l0kMF5A/udTAfnDXDYkkHAR9qkmdKob06F/Xn26ET81GJM9b5uHsNuxaVUFEU/R9onZ6eix2W7GN/qV4ctqR3bKxYb20XicZL6WyuvhyIi1kTEKyLi1RFxYfnzmoh4S0R8sVON7HXHLh/i0nNOZnBeaXeP37Qeu3wI8JE2aaY06ptTYX+ePToRP7UYU72vm8ewW3EpFUXRz5H2ydmp6HHZLsa3+tWcAbjg1BP2i+0LTj2BOS39BU2d5nGS+lvTT1pExHnA3wABZPnnuDHgK+1tWv8YGAhOX72Kx53/dO7fNsphS/Z/PNhH2qSZ0ahvToX9efboRPzUYkz1vm4ew27FpVQURT9H2idnp6LHZbsY3+pX9w2P8rEb7uRlv3Q8EZAJH7vhTn7u6IM49tD+6cO9zuMk9bdWxrS4EPg8cC6lQbkPAS4AngX8P+Cf2924fjIwEBy/YnHNm9SZfqx2NrxvVapnsr45FVPpz/bB3tXu+Kllpq8RYIxOV7ePYa249Biqk2YyvopwjmykG9cKNa8b8doLcdku/R7fXj9np5VLB3lox27++us/npjWr324l3mcpP7WykNTxwEfzMyHgO8Cv5yZOzPzM8AllBIYmoKZfKx2/H2rv3H5N3nB336b37j8m1y7YSNjY9nxdUv9qNX+bB9UIzP96gVjdPo8hupnMx1fM92/1Fu6Fa/GZX+Y6fObZo59uDccffAi3nH2mv2O0zvOXsPRBy+a4ZZJaofIbO6CGxEPAb+VmddFxFrgv4GlmbkzIn4ZuCYzl3WwrYWybt26XL9+fdvqG/8fHN1+rPb2zdv5jcu/ecD/Avri+U/v2/8tMwNm5L/itDtG1bxa/Rmo+b+0CtQHjdMCm841Yrr/Q3C2xyi0J05n6joPhTqGPa+J/jTrzqVFiK+Z7F/tMAP/k3vWxem4bsZrr8flVLQxlgtxzS/C+U0zZ+/eMTbcN8x9w6McvmyQ1YcvY+7c/f7fbyHidDa7ffN2XvrR73DG2iMnXg/1+Zvv4f+d+//ZRx8xa6/56ik147SV10NdD/zfiPg6cCuwh9KroT4DPBEYnW4Le9l0b9Bm6rHaeu9b3bS1v963KrVLM329uj+P/y+t8QEZx/+nzumrV82adx5regYGYiL5tWlr6XLbzHVmsthr9hpljLbHTL4+w2P4iOncr7WjP3VTt/4QXoT46uXX0/RaXLXTTLx2p9tjDPVqXE5FP8ZyEc5vmhljY8mXf7Cpr+K5H23aOsqdW3bu93qo8en2Uan3tfJ6qIuBM4F/y8xdwBXAxyLi34H3Ale1suKIWBARP4iIj1ZMi4h4U0TcFRE7IuIrEfG4Gsu9LyI2RsS2iPh0RBxRVebgiPhoRGyJiIci4iMRsbSqzKMi4rMRMRwRmyLiLyJifivbMK6XHxtdNH/uxKN04wbnDbBo/pwZapFUXFPt63dsGZm44YXSl50Lr7yRO7aMTLzzuFK738M5Npbcvnk7N/zkAW7fvL0nzk3aXydir1ndiFEwTjupW8ewXToVC9O9X2tHf+qWbt6b9lp8NaOb56Neiqt2mqnvT/0Yr1PRiRjvx1g+bEnteFmxeHbFy2zUj/Hcj+r+PWuef8+S+kHTSYvM/A7weOB95UkXAn8B7ADeDfxxi+u+CHhc1bS3Am8G3gP8DrAMuC4iKl879SHgxcDrgZcCJwFfjIjKs9K/Ar8K/EG5XWdRMVB4RCwAvgwcA7yI0pgcrwQubXEbgN6+oO3et4/zTzlhv3cAnn/KCezeN9ZgSWn2mWpfn+x/aXX6fam9nFTVIzoRe83qxjt9jdPO6qX3MncyFqZ7v9aO/tQt3bw37aX4aka3z0e9FFftNFPfn/otXqeiUzHej7E8ZwAuOHX/78oXnHoCc1r5r5/qSZO9kULFsW10d82/Z23btWeGWyapHVp5PRSZ+TPgZ+V/jwFvn8pKI+LngPOBByqmLQH+BHhbZl5envZN4E7gZcClEfFoSgmLF2bmJ8tlbqL0uqrnAJ+JiGcAzwCekpnfLpe5G/hqRDwpM78HvBB4DHBcZt5dLrMT+FBEXJKZm1rZnl5+bHT+nDl8cv1dvOyXjp94B+An19/FLz5m+Uw3TSqcqfb18f/VV/0+3MOWDDIwEJy+ehWPO//pHXnncb0/CjzOd/H2lE7EXrM6HaNgnHZaN45hu3QyFqZ7v9aO/tQt3X4FTq/EVzO6fT7qpbhqp5n6/tRv8fr/t3fn4XJUdf7H358LIYGEsIRAQAghKoOiiJhRdGRkUxnGBRRl1FFwVHBFRRxxwXEGXHBBWVxAf8o4KgqKqIi4BBAURRERBcQABghLgBCycknC/f7+ONVJpdP33r653V1Lf17PU8+9XXW6+1TV95w6VdV1zsboVozXMZbvXTLI139zx3rnyl//zR08febWzNrO7ZM6a/yCvzme3SNFuWy2aevrWXN2fVrRWTOzDhjxpoWk48fwWRERnx0tkaRNga8CnwIOzy3aF5gC/DD3gYsl/RI4hPQUxIHZootzaeZJujFLcyFwMHB/44ZF5nJgaZbmuizNdY0bFpmLgK8AB5F7KqMdVW6grXrsMY6cM5MzLpu3tq/G4w58Iqv9pIXZBja2rDd+1dfcJ2rjV33d7PO4yjdVbZ1uxV67ut0vt+O0+6rSt3o3Y2G87bVOlade6HXbtCrx1Y5e10dViqtOKvL8qU7xujG6FeN1jOUdpk5i8cpV6/WXX5XzfBufRo8Uvk5Sbo+uaX09a9VjjxWdNTPrgNGetPj0GD4rWNd11EjeB2wGfJz1b1rsnv29rSn97aSnKBpp7ouI5ueGb8+9f3dgvVF4ImJI0vymNH9rSrNI0tJcmrZVuYE2bfLElnemD3nKjKKzZlY6G1vWi/xVX5Vvqto6VYy9sXCcWkM3Y2G87bWqlCeodtu0aEXc8KlKXHWSY7Q43YrxOsay47R/+TpJNey01RZ86KK/bLCfXrjnM4vOmpl1gCJ61190Nqj2dcBBEfEbSdcD10fE0ZLeD/xXRExqes8pwFsjYltJZwPPi4jmwbm/ATw5IvaR9FPSUx+HNKX5FekJjJdJugW4PCLe3JRmAXB+RLR8wkTSMcAxADNnznzGHXfcsXbZ0FAwf9GKyjXQGn2aNjfEDtlzRiXyXxE925Ajxah1RtXK+hjKuOO05KoWe2PRZpz2dGUdp8XodrukB+WoNHVpneuMbuqTtnEp4tQxWoyKxHhpjvmO0/7ktmk1VKQ+K1opjvlmo2gZpx27aSFpRkTcN8LyAeAqUrdM78jmXc+6mxYfAE6KiM2b3vdR4NiI2E7SOcB+EfGkpjTfBP4hIuZI+hnwWET8S1OaXwP3RsQRkv4GzI2ItzSluRs4LyJOGG1958yZE9dee+1oySrBDbGuK2Rj1ilGbXzaLOOOUytUG3Fa2IHJcdpbFW+XuC6tgYrHYDscp32uAjHuY74Vzm3TaqhAfVY0H/OtClrGadsDcUuaCpwEPA+YmPtAAVsAM4EJI3zEO4BdgRdl41rkPlqbAkuAiZImRMTq3PIp2TKyv1u2+OzmNDu2kWa0z+kb/d6vq1nduYxbFThOrcGxYEVzDFrdOcbNRudyUg3eT2b1NTCGtGcA7wTuATYHhoCbgW1JNyPeNsr7DwceBzwErM6mpwGvy70WsFvT+2YDt2T/zwNmSNp8lDSz8wuzpzxmjZJmGjA1l8bMzMzMzMzMzMzMzHpoLDctDgU+GBGHAV8E7o6II0kDV/8B2GuU9x8L/GPT9Dfg4uz/bwODwGGNN0jahvRkx9xs1lxgE+DFuTRPBPZsSrOjpPzIOweQbkjk08yRtHMuzWGkGydXjrIeZmZmZmZmZmZmZmbWBW13DwVsBVyT/f8X4ESAiFgh6TPAJ0Z6c0Rs8ASDpEeARRFxbfb6TOAUSUOkGxofBJYCX8k+4zZJFwBflrQVsBj4OHADcFH2sZdl+bxQ0ntJXVZ9GvhxRPwhS3MeqaurSyWdBOwEfBI4Z6RxOcaj0c/ewqWD7DC1t/3sFfndZg1li8Oy5cfKoZ24cOxYWbSKRcDxaVYyzWV15jZbcOfilS6n1nHDtVHcdtl43nb9y/u+GtasGeLGe5dw75JBdtxqc/bccSqbbjqW32ebWVmN5abFvcCM7P+/AdtJ2jEi7gUeyC0bjw+Qup06gTS+xNXAURGRH2fi9cBngVNJT4r8AjguIh4DiIiQ9BLgTOAc4FHgB8C7Gx8QESslHQycBXyTNI7FF7Lv77ihoeDSG+/j+POvZ3D1EJMmDHDaK/fmkD1nrD3odeuA2M53m3Vb2eKwVX7OevXT2W3aFO5f5kZpv2q3ru5ULPtEyMZjuFjcbFPx9m/9cVzx6di0ftfJMtBcVnedtjnvOPCJfOiiv5SiTWT1Mdxx4QVP2oGf3bywrbaL6//1le0cxnpnaCi47JaF3LBgCUMBmwieuvNWHPgPO3jfl8iaNUP85MZ7mXf/coYCbr53KXc+tIJ/2XNH37gwq4GxlOIfAJ+Q9PyIuAP4O/BhSbOAtwB3jPXLI2LviDg693pNRJwYETMiYkpEvCAi/tr0nhURcUxEbBsRW0fEERFxT1Oa+yPiyIjYMiK2i4g3RMTSpjS3RsQhEbFFROwYEe9tGgC8Y+YvWrG2oQMwuHqI48+/nvmLVgDrGkOHnnEVr/ryNRx6xlVceuN9DA1F17/brBfKFofN+dlmi82Yt3A5/3pm58ugVUc7cdqpWO5mvW/9YbhYvGHBknHFp2PT+l2ny0BzWX3RXo9be8MCim8TWX0Md1y48d4lbbVdXP9vqGznMNY7dz60gnkLl3POlbdz1mW3cvaVtzNv4XLufMj7vkz+unApCxY/st5+WrD4Ef66cOnobzaz0hvLTYsPATcB78leH0966uE20iDb/93ZrNXHwqWDaxs6DYOrh7h/2SDQ3cbQaN9t1gtli8Pm/Lxsn505fe48n5D0uXbitFOx7JNgG6/hYrH52tJY49Oxaf2u02WguaxKlKpNZPUx3HHh3iXttV1c/2+obOcw1jsLlz66wfnh6XPnsXDpowXnzPIWr1zdcj8tXtmV3yObWY+1fdMiIpZFxItINyiIiB8C/wy8Cnh2RHy7O1msvh2mTmLShPU39aQJA2y/5SSgu42h0b7brBfKFofN+fEFBIP24rRTseyTYBuv4WKxuceCscanY9P6XafLwHBltfm12+Y2XsPF2o5bbd5WzLn+31DZzmGsd1asWtOyPKxctaagHFkrg6sfa7mfBlc/VlCOzKyT2r5pIWmmpF8D/5m9fjPwG9Kg1j+VtHdXclgDs6ZN5rRX7r22wdPoC7MxYGYnGkNDQ8HtDyznN7c9yO0PLF/7GO9o323WC2WLw+b8bKJqXUAYrrzb+LQTp52K5aJOgh075dCJ/TBcLO6181bjik9foLF+1+l2+YBYr6z+6E93c8phTylNm8jqY7jjwp47Th2x7dKI1wHJ9X+Tsp3DWO/suu3kluVh5rbe92Uye1rr/bSby6hZLSiivRNlSecD+5C6hLoGuA+4EjgO+BKwWUQc3KV8ls6cOXPi2muvbTt9Y1Cz+5cNsv2W6w9qNt4BvkZ7/0jfbT1RyMYea4x2W9niMJ+fGVMncdO9yyoxyF4XBwR0nNJenHYilosY2LEGg0kWlslOxmk3BnPPxyIwrvisQZwUzXVpxXWjXX7Wq5/ObtOm8MDyVC5nbrMFdy5eWWSbyHFaU8O1UUaa34jXbbbYjNc9e9e1Xa0UXP+X5phftnMY6401a4a46E93rx2DaNKEAU457Ckc9rTH5Qd4Lk2c9qs1a4b4wQ338MHv/3ntfvro4U/lpXvt5IG41/Ex36qgZZyO5abFIuCNEfF9SYcAlwAHRcTlkl4AfC8ituxYdkuu0wVwPI2h2x9YzqFnXLXeY3GTJgxwyXH7MXv6lI7l0TaaDxIVUJUTki6Wd8dpj/U65mpwrKjFiWEV9kNV6sOScl1aA33QLnecGrBhvO641SReMWdnnr7L1uw6bXKR9X8tjvlWXbc/sJzXn/s7XrTX45AgAi6+4W6+dvQz83W547Rgbe6nfudjvlVByzjddAwfMAF4KPv/X4FlwFW5Zas2OmvGwICYPX3KRlWsI/U/6orarD3jKYO95PJeH72OOcdOOVRhP1SlPjTrFrfLrV80x+u9SwY5Y+6tfPuYZzlera8tXDrIHYse4fOX37refNfl5eL9ZFZvY3le6o/AmyQ9C/g34JKIWCNpGvA+wLfQCuL+p836h8u7bSzHTjl4P5jVm8u4VYnj1aw1l41q8H4yq7exPGnxn8CPgVeTnrj4n2z+TdnfQzqYr77TeAx94dJBdpg6tsfQGwOENfe96wHCrB+NpyxVgct7OVQxzhw75VD2/VDF2DYrk40p4y53VpTmeN112uac/NKnsnDp4NrljkXrR7OmTeasVz+dGxYsYShgE8FTd96qNO01S7yfzOqt7ZsWEXGNpF2APYG/RsTybNHrgN9FxOJuZLAfjHfAv4EBccieM9jjuP3c/7T1tX4YQNblvXhVjTPHTjmUeT9UNbbNymSsZdzlzoqUj9eHVjzK3Q8Pcsz/XetYNANWrQnOufL29cqDlY/3k1l9jaV7KCLikYi4NnfDgoj4qW9YjM/8RSvWnqhA6vf2+POvZ/6iFW1/RqPv3X1nb8fs6VPcsLS+1ImyVAUu78Wqcpw5dsqhrPuhyrFtViZjKeMud1a0RrxuO3ki7/veDY5FM1w3V4X3k1m9jemmhXXHSAP2mVn7XJasFxxnVleObbPec7mzsnAsmq3j8lAN3k9m9eabFiXgwYPMOsNlyXrBcWZ15dg26z2XOysLx6LZOi4P1eD9ZFZvvmlRAo0B0BqVbasB+4aGgtsfWM5vbnuQ2x9YztBQFJVdq7C6x1E7ZcnKrQox6jizunJsj64KdVS39PO6d5PLXX1UvYw4Fs3WcXmoBu8ns3preyBu657RBuxrZ4C+oaFg/qIVLFw6yA5TyzOop5VH3Qd6bJSB6VtuxneO2ZeVqx5zWaiYqsTowIB4wZN24DvH7Mu9SwbZcatJ7LnjVqXKo/VeHY7DZR4kvAyqUkdtrJFiuO7rXiSXu84psh6uQxlxLJqtb/LEAT59xNNYsWoNkzfblMkT/ZvfMvJ+Mqsv37QoicYAaLOnT9lg2XCDC+1x3H7Mnj6lFo3kKqvKharR4qjKhoaCy25ZyA0LljAUsIngqTtvVdp9Ya1VJUaHhoKf3byQ48+/nm222IxXzNmZux56hCftOJXdtnPM9YPmen/mNlusjYmqH4dHao/0u6rUURtjtLZk1da9Km2zBpe78Sv6fGj+ohWceunNvOG5s1H2dadeejN7zNiyUvvVsWiW3PnQCu54cCUPrli19vxy2uTN2HXbFczazuWjLLyfzOrNNy0qYKTBhWZPn1K5E8k6KfoEaSxGi6Mqu/OhFcxbuJxzrrx97X5450FP5AnTp7ixUiFVidFGnbvNFpvx2n135YzL5pW+/FvntKr3T335Xpz281t8HK65qtRRG2O0tmSV1r1KbTPrnKLPhxateJQj58xcr01w3IFP5KEVj5aujJjZ6BYtX8WKVY9tcH65aPkqZm1XdO6swfvJOuFxu8zkngV3jftzdtp5F+6+684O5MgafNOiAhqDC+VPFvODC1XpRLJuij5BGovR4qjKFi59lNPnzltvP5w+dx77zNzGNy0qpCox2qhzX7bPzmsvTkC5y791Tqt6/33fu4E3PHc2n7/81rXpfByun6rUURtjtLZklda9Sm0z65yiz4c222RggzbBGZfN4zvH7Nv17zazzhtc81jL88v/d9ScgnNmed5P1gn3LLiLI8++etyf851jn9OB3FieO3urgNEGF2qcSOaV9USybkY6QSqbOg9StWLVmpb7YeWqNQXlyDZGVWK0UedKVKb8W+cMV+9v0tSi8nG4fqpSR22M0dqSVVr3KrXNrHOKPh9aueqxYdqij/Xk+82ssx5dPdSyTK9aMzTMO6wI3k9m9eYnLSpgtEHRGieSzY/Bl/FEsm6q9MvDOg+ut+u2k1vuh5nbugxUSVVitFHn3nLf0sqUf+uc4er9Obtuu3a+j8P1VJU6amOM1pas0rpXqW1mnVP0+dBwcbfDVMedWRXtOs3nl1Xg/WRWb75pUREjDYo22olk1QYjrJKiT5DGqp3B9aoYL7tt13o/7LZdOfeDDa9TA0B2M44bde6Td9ySXadN5gPf/3Mlyr91xnD1/nNmT+OSClzQ7ZUqHkvaUddBatu5KVGVde9F26yu8V1lRd9Yq9o5Qbe4bFhd7LbdZD7zir15zwXryvRnXuHzy7LxfjKrN9+0qInhTiQ9GGF3FX2C1GlVjZe67Qcbn17E8cCAmLXdFGZuO5m9d9nacddHRqpvqnBBtxeqeizpd3WJ4W63CRzf5VVkDLst6rJh9TNxgjjmn2czFDCg9NrKx/vJrL5806LmPBhh99XlJB+qHS912g82Pr2MY8ddf/J+H1mVjyVWD90so45vG06/HxtcNqxO5i9awdu/9ccNuh26xPFcKt5PZvXmgbhrzoMR2lg4XqwOHMdmxXIZtDpzfJu15rJhdeJ4rgbvJ7N66/lNC0mbSTpF0h2SVki6TNI+ueWS9EFJd0paKennkvZo+oyJkj4r6T5JyyR9V9JOTWm2kXSupEWSFkv6iqSpTWl2kfR9SUskLZT0SUmbdXcL9FZjULg8D0Zow3G8WB04js2K5TJodeb4NmvNZcPqxPFcDd5PZvVWxJMWnwWOAz4BHA6sBC6XtGu2/MPAh4BPA/8GbAXMlbRV7jO+BLwOOBF4PfA04BJJm+TSfA/YH3gz8C7gJcC3GgslTQR+BuwKvBY4GXgbcFrH1rQEGoPCNSryfh0UztrjeLE6cBybFctl0OrM8W3WmsuG1YnjuRq8n8zqradjWmQ3Ht4EnBgRX8zmXQUsAl4r6XTgBOAjEXFGbvkdwBuA0yQ9nnTD4tUR8Z0szZ+AW4CXAhdKOgA4ANg3Iq7J0iwAfiFpn4i4Dng18ARgt4hYkKV5BPiSpJMjYmEPNknXeVA4GwvHi9WB49isWC6DVmeOb7PWXDasThzP1eD9ZFZvvR6IewXwLGB+bt5qIICJwL7AFOCHjYURsVjSL4FDSE9BHJgtujiXZp6kG7M0FwIHA/c3blhkLgeWZmmuy9Jc17hhkbkI+ApwELmnMqqu3weFs7FxvFgdOI7NiuUyaHXm+DZrzWXD6sTxXA3eT2b11dPuoSJiTUT8MbsRMSBpN+CrpJsW3wB2z5Le1vTW23PLdgfui4gVo6S5tem7h0g3S0ZKs4h0Y2N3zMzMzMzMzMzMzMysp4oY06LhJNKNhtcCp0bELcBU4NGIWNWUdlm2jOzvshaf140065F0jKRrJV37wAMPtFypogwNBbc/sJzf3PYgtz+wnKGhKDpLVoAyx2iDY9WKilPHno1Ft+PU8WjjVYVjviX9XN4dp9ZK2cqE49RacZxWQ9n2Uz/r+xgd2BRJ454et8vMotekNHrdPVTe94ErSGNPfFjSZsAjpKcumgkYyv3fTpqhNtKM9jnriYhzgHMA5syZU5qacGgouPTG+zj+/OsZXD20dvChQ/ac4b78+kxZY7TBsWpQTJw69mysuhmnjkfrhLIf8y3p9/LuOLVmZSwTjlNr5jithjLup37W9zE6tIYjz7563B/znWOf04HM1ENhT1pExA0R8cuI+AhwBvBe0pgXEyVNaEo+BViS/b8E2LLFR3YjTSXMX7RibSUNMLh6iOPPv575i5p70DIrlmPViuLYszJxPJr1D5d3s/W5TFgVOE6rwfvJrN56etNC0gxJr5fUfLPgj6SBuBeTnnTYrWn5bOCW7P95wAxJm4+SZnbTdw8As0ZJM43UNdQtVMjCpYNrK+mGwdVD3L9ssKAcmbXmWLWiOPasTByPZv3D5d1sfS4TVgWO02rwfjKrt14/abE1aeDtI5rmvwC4H7gIGAQOayyQtA3wPGBuNmsusAnw4lyaJwJ7NqXZUdIzc99xAOmGRD7NHEk759IcBqwGrhz7qhVnh6mTmDRh/V05acIA2285CXAff1Yeo8VqK45f6wTXk1YmG1MXbizHtlmxelnewWW+31Vh//e6TIxXFbapdV7V4rRfeT+Z1VtPb1pExF+B7wGfkXSspOdL+iJpMO4TI2IpcCZwiqQTJL0EuBRYCnwl+4zbgAuAL0t6k6QjgEuAG0g3PQAuA64BLpT0KkmvA84DfhwRf8jSnAfcA1wq6XBJbyN1U3VORNzX5U3RUbOmTea0V+69trJu9OM3a9rktX38HXrGVbzqy9dw6BlXcemN97mxZYUYKVZbcfxap7ietDIZa124sRzbZsXrVXkHl/l+V5X938syMV5V2abWeVWK0342c5stOOWwp6y3n0457CnM3GaLgnNmZp1QxEDcrwP+C3g/sCNwE/CKiPhutvwDpIGwTyCNL3E1cFRE5MeZeD3wWeBU0o2XXwDHRcRjABER2Q2PM0mDwDwK/AB4d+MDImKlpIOBs4Bvksax+EL2/ZUyMCAO2XMGexy3H/cvG2T7LScxa9pkBgbE7Q8sb9nH3x7H7cfs6VMKzrn1m5FitZXh+qh0/NpYuZ60MhlrXbixXIeaFa9X5R1c5vtdVfZ/L8vEeFVlm1rnVSlO+9mdi1dy5mXzeMNzZyNBBJx52Tz2mbmNy6hZDfT8pkVErATel02tlq8BTsym4T5jBXBMNg2X5n7gyFHycitwyOi5Lr+BATF7+pQNKuaR+vhzJW5FGC5WW3H8Wie5nrQyGUtduLEc22bl0IvyDi7z/a5K+79XZWK8qrRNrfOqEqf9bOHSQe5Y9Aifv/zW9ea7jJrVQ6/HtLAecx9/VmWOX+sFx5nVlWPbrL+4zPc37//O8zY1KzeXUbN6802LmnNfjFZljl/rBceZ1ZVj26y/uMz3N+//zvM2NSs3l1GzeitiTAvrIffFaFXm+LVecJxZXTm2zfqLy3x/8/7vPG9Ts3JzGTWrN9+06APui9GqzPFrveA4s7pybJv1F5f5/ub933nepmbl5jJqVl/uHsrMzMzMzMzMzMzMzErBT1qUxNBQMH/RChYuHWSHqX6kzayKXI6tmxxfVgTHnQ3HsWF15vg2M9cD1eD9ZFZfvmlRAkNDwaU33sfx51/P4OqhtYMHHbLnDFe2ZhXhcmzd5PiyIjjubDiODaszx7eZuR6oBu8ns3pz91AlMH/RirWVLMDg6iGOP/965i9aUXDOzKxdLsfWTY4vK4Ljzobj2LA6c3ybmeuBavB+Mqs337QogYVLB9dWsg2Dq4e4f9lgQTkys7FyObZucnxZERx3NhzHhtWZ49vMXA9Ug/eTWb35pkUJ7DB1EpMmrL8rJk0YYPstJxWUIzMbK5dj6ybHlxXBcWfDcWxYnTm+zcz1QDV4P5nVm29alMCsaZM57ZV7r61sG/3wzZo2ueCcmVm7XI6tmxxfVgTHnQ3HsWF15vg2M9cD1eD9ZFZvHoi7BAYGxCF7zmCP4/bj/mWDbL/lJGZNm+yBg8wqxOXYusnxZUVw3NlwHBtWZ45vM3M9UA3eT/3tcbvM5J4FdxWdjc4b2BRp/DG80867cPddd3YgQ8XxTYuSGBgQs6dPYfb0KUVnxcw2ksuxdZPjy4rguLPhODaszhzfZuZ6oBq8n/rXPQvu4sizrx7353zn2Od0IDcdNLSmnuu1Edw9lJmZmZmZmZmZmZmZlYJvWpiZmZmZmZmZmZmZWSn4poWZmZmZmZmZmZmZmZWCb1qYmZmZmZmZmZmZmVkp+KaFmZmZmZmZmZmZmZmVgm9amJmZmZmZmZmZmVlXPW6XmUga92T1t2nRGTAzMzMzMzMzMzOzertnwV0cefbV4/6c7xz7nA7kxsrMNy1KYmgomL9oBQuXDrLD1EnMmjaZgQHfOTTrFpc56xTHklWB47T/eJ9bP3Ccm1m3uH6pBu8ns/ryTYsSGBoKLr3xPo4//3oGVw8xacIAp71ybw7Zc4YrW7MucJmzTnEsWRU4TvuP97n1A8e5mXWL65dq8H4yqzePaVEC8xetWFvJAgyuHuL4869n/qIVBefMrJ5c5qxTHEtWBY7T/uN9bv3AcW5m3eL6pRq8n8zqzTctSmDh0sG1lWzD4Ooh7l82WFCOzOrNZc46xbFkVeA47T/e59YPHOdm1i2uX6rB+8ms3np+00LSJpKOl3SzpBWSbpL0dmVDvyv5oKQ7Ja2U9HNJezR9xkRJn5V0n6Rlkr4raaemNNtIOlfSIkmLJX1F0tSmNLtI+r6kJZIWSvqkpM26vxXWt8PUSUyasP6umDRhgO23nNTrrJj1BZc56xTHklWB47T/eJ9bP3Ccm1m3uH6pBu8nsxEMbIqkcU+bbjapI5/zuF1mjnkVihjT4iTgROBk4LfAfsDngC2ATwIfzpa/D5gPfAiYK+nJEbEk+4wvAS8B3gMsBz4OXCLpGRHxWJbme8Bs4M3ZZ38KmAG8CNKND+BnwCPAa4GZwKlZ2rd3Zc2HMWvaZE575d4b9MM3a9rkXmbDrG+4zFmnOJasChyn/cf73PqB49zMusX1SzV4P5mNYGgNR5599bg/5jvHPqdjnzNWPb1pIWkAOB74VER8NJs9V9J04ARJXwROAD4SEWdk77kKuAN4A3CapMcDrwNeHRHfydL8CbgFeClwoaQDgAOAfSPimizNAuAXkvaJiOuAVwNPAHaLiAVZmkeAL0k6OSIWdn2DZAYGxCF7zmCP4/bj/mWDbL/lJGZNm+yBg8y6xGXOOsWxZFXgOO0/3ufWDxznZtYtrl+qwfvJrN56/aTFVsDXgQub5t8CTAcOBKYAP2wsiIjFkn4JHAKclqUBuDiXZp6kG7M0FwIHA/c3blhkLgeWZmmuy9Jc17hhkbkI+ApwEPCt8azoWA0MiNnTpzB7+pRefq1Z33KZs05xLFkVOE77j/e59QPHuZl1i+uXavB+Mquvnt60iIjFtO566cXAAmDn7PVtTctvJz1FAbA7cF9ErGiRZvdcmlubvntI0vymNH9rSrNI0tJcGjMzMzMzMzMzMzMz65GeD8TdTNIbSU89fBKYCjwaEauaki3LlpH9Xdbio7qRpjmvx0i6VtK1DzzwQOsVMiuQY9SqwHFqVeA4tbJzjFoVOE6tChynVgWOUys7x6h1WqE3LSS9hjSo9neBswAB0SopMJT7v1dp1hMR50TEnIiYM3369FZJzArlGLUqcJxaFThOrewco1YFjlOrAsepVYHj1MrOMWqdpohW1+178MXSu4HPkMaveGVErJL0NuBMYGJErM6lPR14UUQ8XtKngFdFxM5Nn/cDYEpEHCTpAmDHiHhuU5o/AddGxBsk/R64JSL+vSnNEuDTEXHyKPl/gDRAeKdtBzzYhc/tB2Xddg9GxCG9/tIuxWhZt3G39NP61ilOq6Kf4msshtsuhcQo1DpO6xyDRa1bP9alZY6jMucNHKdFK3t8VEG3tmEZj/mOl/5VpbZpP8dpP687lCxOO3TM7/d9Oh5V23Yt47TXA3EDIOljwPtJg3K/ISLWZIvmkZ502I31x5uYTRqsu5FmhqTNI+KRpjRX5dL8U9N3DgCzgG/m0sxuSjON1DXULYwiIrpy21DStRExpxufXXfeduvrRoz22zbut/UtQrfq0ipwfLVWxu1S1zgt47bulDqvWytFxmiZt3WZ8wblz1+nla0u7bft3w113IbDxWkd19XaU8Z97zjdUD+vO5Rv/TtxzC/bOlVJXbZdz7uHkvRO0g2L04GjczcsAK4GBoHDcum3AZ4HzM1mzQU2IQ3e3UjzRGDPpjQ7Snpm7rMPIN2QyKeZIyn/xMZhwGrgyo1eQTMzMzMzMzMzMzMz2yg9fdJC0o7AqcCfgW8Dz5KUT3ItqXuoUyQNkZ62+CCwFPgKQETclnX/9GVJWwGLgY8DNwAXZZ9zGXANcKGk9wITgE8DP46IP2RpzgNOAi6VdBKwE2kw8HMi4r7Or72ZmZmZmZmZmZmZmY2k191DvRCYCDwV+E2L5dOBD5AGwj4BmEJ6+uKoiFiSS/d64LOkGyADwC+A4yLiMYCICEkvId0AOQd4FPgB8O7GB0TESkkHkwYA/yawBPhC9v1FOqfg768yb7vu67dt3G/ra73l+GrN26V36ryt67xuZVPmbV3mvEH581d33v7j10/bsJ/W1dZXpX1fpbx2Wj+vO9Rz/eu4Tr1Si21X2EDcZmZmZmZmZmZmZmZmeT0f08LMzMzMzMzMzMzMzKwV37QwMzMzMzMzMzMzM7NS8E2LHpO0iaTjJd0saYWkmyS9XdmI5Eo+KOlOSSsl/VzSHkXnuywkbSbpFEl3ZNvvMkn75JZ7+20kSS+RtKxp3hxJ0WL6dC7NREmflXSfpGWSvitpp96vwdg0r6+ko4dZ15AUuXRHDJPm7cWsiZWVpP1HiilJu7ZTxupmmLpm1Lq7qnVN2YzWDqm60doJNnaSpg1TT303W15420vSQZKukfRItu//W9ImReevzeNA4duvrqoQu2XntgxIepOkeVn98htJzy46T9ZbrdquBeVjTLEo6eJhyuaUXuW5G9rdH5KeImmupOVZPf++qrd3x7Duhex7jX69syPXlyRtI+lcSYskLZb0FUlTm9LsIun7kpZIWijpk5I26+b6j0cn2ix13Ha9Hojb4CTgROBk4LfAfsDngC2ATwIfzpa/D5gPfAiYK+nJTYOR96vPAq8lbZ/bgOOAyyXtFRF34O23USQ9B/gG0HwQ3wtYARzcNP+e3P9fAl4CvAdYDnwcuETSMyLise7keHyGWd8fA80Nv+nABcD/5ebtBdxKisO8v3c4m1Z917FhTE0Cvpstuws4iNHLWG2MUNe0U3dXrq4pqdHaIVU3WjvBxu5p2d8XAktz8xdlfwtte0n6J+AnwLeA9wPPIMX3EPDfBeevneOA267dU+rYrYi+bstIeh2p/fE/wO+BdwA/lfS0iHDbvw+M0HbtdT42Jhb3Ak4Hvt00f2XXMtpl7e4PSdsDvwD+ArwS2Af4KPAYUMkbqmOMxaL2/WjnGZ26vvQ9YDbw5uyzPwXMAF4E6eI98DPgEdJ5wUzg1CxtWX9s2ok2S/22XUR46tFEerJlKXBy0/zPA/cDWwLLgPfllm2Tvef4ovNf9ARsBazKbwtgc1LF+yFvv43aphOB/wQeBR4Cljct/xzw2xHe/3jSgf/I3Lwnki4UvKzo9Rvr+rZIfxHwV2DzpnnfLnpdPFVzysrUA8D03Othy1hdppHKXjt1d9XqmrJOo7VDis5fB9ZvxHZC0fmr6gS8C7hvmGWFt72Aq4CLm+Z9AriiDPlrkd+1x4Ey5q9OU9ljt6pTv7RlSBcG5wNfzM2bANwOnFF0/jx1ff+P6byxy3kZcywCWwMBHFL0tixif5B+tPAgsEVu3smkC8ATil6fLq97Ifu+nfOM0Y4XtHHOBxyQrd+zcmkOyubtk71+PbAa2DmX5g3ZvB2K3qfDrPu42ix13XbuHqq3tgK+DlzYNP8W0onLgcAU4IeNBRGxGPglcEiP8lhmK4BnAV/LzVtNKmATgX3x9hurfyH9KvG9wJktlu8F3DDC+w/M/l7cmBER84AbKec2H21915L0QuClwDsj4pHcotG2iVlLkp5M+nXChyLigWx2v8TTSGWvnbq7anVNWY3YDpE0ufdZ6qjR2gm2cUaqpwpte0maDvwTcE5+fkScGBH7F52/Zi2OA6XKXw2VNnarqs/aMk8AdmX9GFlNejrbMVJ/bZ839sDGxOJe2d+6lM2x7o+DgbkRkX+y4CJgW+AfO5677hrruhe179s5z+jE9aWDSTdBrsm973LSBfx8musiYkEuzUWk3oYOanN9em28bZZabjvftOihiFgcEW+PiD82LXoxsADYOXt9W9Py24Hdu52/souINRHxx4hYLGlA0m7AV0kXI77Bum3k7de+3wO7RcQZpO3Y7KnALpKul7RK0q2Sjsot3510N3hF0/vKus1HW9+8TwA/i4ifNmZkfUDOAp4u6W+SVku6QdKhXcux1clHgb8BX87NG62M1cVIZa+durtqdU0pjdYOabF9K6WNdoJtnL2ALSRdLWlQ0gJJ/5n1T1x02+uppF+grpD0oyx/90v6iKSBEuSvWfNxoGz5q5syx25V9VNbphEHtzbNvx14vLJxc6y2xnLe2G0bE4t7kX6Zf0rWd/1KSRdImtHNjHbRWPfH7rTeXo1lVTLWdS9k37d5ntGJ60sb7NuIGCI9jTRSmkWki/Nl3f/jbbPUctt5TIuCSXoj6U7WccBU4NGIWNWUbFm2zNY5CfhI9v+HI+IWSS/D229MIuLu4ZZlA/ZsR3qk7P3AYuBVwLmSIiK+TtqurQaCWgbs0vkcj89I65snaX9gbzbsa3Ev0sWR3YDjgTXAW4EfSTo4Ii7vVF6tXrKLpy8BjskaBu2WsVoYpey1c+yrVF1TJU3tkDrZoJ1QYF4qK7vw/2TSUywnAHcCh5L6yJ1EepKlyLbX9Ozv10ljWpwGPI/UbegjpB9olaJt2Oo4gNv+XVOB2K2cPmzLNOKguf2xjFS3TGb9fsetRto9b+yRjYnFvUhPmS4DDif1YX8KcJmkp0fEo93LbudtxP5ode6wLLesMjZi3Uuz7/PnGR28vjRSmnbOHUu3/zvUZqnltvNNiwJJeg1poJTvAmeRCm6rO6ci9UNm63yf1FfxAcCHs5HsH8Hbr5MeJj0idkNE3JvN+0V2sPkv0gUCUc9tfgzwl4iY2zT/JuBfgV9FxFIAST8H/kS6QOKbFjacN5EaZvlfez/M6GWsH7RTj9S1rilUi3ZInWzQToiIk4rNUiWJNDDfnRHR+NXV5dmTh+8j/eq6yLI5Ifv704h4by5/25GOy58oOH95rY4Drtu6p+yxW0X91pZpDHbbHCeN+Y4T65WNicXTgPNyP6q7UtLNpMGRXwn8X8dzWS7DHV+h/mW3FPu+xXnG5nTm+tJwx+kqnzt2os1Sy23n7qEKIundpMriYuA1ERHAEmCipAlNyadkyywTETdExC8j4iPAGaT+/Vbg7dcxEbEyIn6aO6A0XArMzirQJaRBgZpVdptn8XMo8J3mZRHxcERc0rhhkc17DPg58LTe5dIq6DDgovwvW9osY/2gnWNf7eqaog3TDqmNVu2EFjFmo4iIxyListwJVMOlwBYU3/ZanstP3s+zPDxMedqGh9F0HMBt/66pQOxW0WH0V1umEQfN7Y8ppAs3le5S0SplzLEYEX9t7gUg68f+YfrjvLXVucOWuWW1VYZ93+o8o4PXlzqVpjQ61Gap5bbzTYsCSPoY6e7n/wFH5B7xmce6rmfyZpMGr+lrkmZIer2k5gL0R9Ljb4vx9usYSbtLerOk5sFLNyc91bKCFLMzJG3elKbK2/zZpEGkmgeQQtLTs0ccm20OPNjtjFk1SZoJPImmmGqzjPWDdo59daxrCjNCO6TS2mgnTCsgW5UmaSdJxygNeJ3XKItFt70aJ3ebNc1vnNStpgRtw+GOA7jt3zUViN1K6dO2zLzs7+ym+bOBW+p2s99KbcyxKOnfJP1z0zyR2kP9cN46j9bbC2pexxe974c7z+jg9aUN9m3WvdKsUdJMI3VvVLr936E2Sy23nW9a9Jikd5K6gTodODoi1uQWXw0Mkn7F0ki/Dalv3uZuavrR1qQBNY9omv8C4H7SiPbefp3zOOCLpKcOgLUHu5cBV2WNo7nAJqTBlRppngjsSXW3+TNJfYLe3GLZ3sCXJT29MSM7KBwK/LInubMqemb295qm+e2UsX7QzrGvjnVNIUZph1Td1ozcTri/1xmqgYnA2cC/N81/OWkw3gsptu11E3A38Iqm+f8K3AN8u+D8NQx3HHDbv3vKHrtV049tmXnAXawfIxNI9YtjxHppY2LxLcDp2QXJhkNJF0Gv7E42S2UucLCkybl5hwGLgOuLyFAPFbbvRznP6NT1pbnAjpIaxyVI3cFObUozR9LOuTSHkX7MUsb470SbpZbbzmNa9JCkHYFTgT+TTqKelcroWtcCZwKnSBoiBecHSRdQv9Lb3JZPRPxV0veAz2RjWNxOquBeC/xHRCyV5O3XOVcCvwK+lFWI9wLHkgZ2ei5ARNwm6QLShfytSHeAPw7cQLqJVEVPAf42zEnWBaSD8AWSPkj6RcB7SY/KndK7LFrFPAV4MCIWNc0ftYz1g4hYPlrdXdO6pufaaYdU+SZGG+2EMvZhW2oR8XdJ5wEnZ+XzZtINgpcDh7VTfrucvyFJHwD+V9IXSf0mHwwcBbylRG3DlseBordfnZU9diuo79oyERGSPgGcJWkx8Gvg7aSBZD9baOasr7QTi5IeD0yPiN9mb/sY8BPgG5K+BuwOnAx8LyKu7vU6dFuL9f8C8A7gEkmfInWL9H7gxLo8YdxQln3fxnnG1XTm+tJlpBvoF0p6L+np2k8DP46IP2RpzgNOAi6VdBKwE/BJ4JyIuK/zaz8+nWiz1HbbRYSnHk3A0aQBTYabtiPdSPoEcB+pn96fAXsUnfeyTKT+3E4F5gOPkrp8OCK33Ntv47ftR4DlTfO2JQ2etIB0gf7XwH5NaSYD5wAPkfpJ/C6wU9HrszHrm82/BPj5CO/bhVSRLyQ9wvhT4ClFr4+n8k6kRvO8YZaNWsbqNg1T14xad1e1rinT1E47pOg8dmAdR2wneNqobbo56QT476Rfef0RODy3vPC2F/Aq0knyIOkXqceULH8jHQcKz19dpyrEblWmfm7LAO8B7gRWki66PbvoPHnqeQxs0HYtKB/DxiJwLun+Rj79i4Dfkc5Z7yFdnNy86PXoxv4YZv3nZPXRIHAH8L6i897Dde/5vqe9650dub4EbE8ag3QZqcur/wdMbUrzBNKYECtJN0g+BUwoeh+OsP3G3Wap47ZTliEzMzMzMzMzMzMzM7NCeUwLMzMzMzMzMzMzMzMrBd+0MDMzMzMzMzMzMzOzUvBNCzMzMzMzMzMzMzMzKwXftDAzMzMzMzMzMzMzs1LwTQszMzMzMzMzMzMzMysF37QwM9tIklR0Hsza4Vg1MzMzs07YmHal26JWdo5Rs/LxTQszKy1JIemEcX7G/tnnzBnDe66QdPEoaZ4LfHc8eTPLk3SupL+MIf2sLLaPGCXdh4G3jjuDZmZ9TNI+ktZI2q7ovJjlSTpK0p8krZA0T9JHJG1WdL6sc5rPZ8baZuxgPiZKOh146Rjf91LgSx34/q6c11l1SDo6i4GOHos7dW6/MTFq9daJa1r9zDctzKzurgOeDdzc4c99I/APHf5M628nA6/uwuf+N7B5Fz7XzKwvSPoH4EfAJkXnxSxP0tHA14CfkS4kfxE4AfhccbmyHuhWm3E0OwLHAZuO8X3vBh7Xge/v1nmdmc/tzUporAcbM7NKiYilwG+LzofZaCLitqLzYGZm60gaAF4PfAYYKjg7Zq28F/hmRLw3e/0LSZsAp0r6z4hYXmDerEv6tc3o8zozs/7iJy1sWJKmSjpd0h2SVkl6QNL/Sto6Wz5J0hmS7pe0VNJXJH1M0vymzzkue1T5UUk3SjqyiPWxypom6TxJyyQ9KOmzkiY0FkraVNL/SLpT0qCkayUdlFu+wSOakt4q6VZJj0j6RfZYfUialfveAUknS7ove9z+h5J2zN5/LnAUsGf2vv27vA2shCRdn8VC4/U2koYk/W9u3vRs3qGSniDpoiyWH5b0f/lHm5sf9Ze0bZZmsaRFkk6V9DVJVzRlZZakSyStlHSPpA/mPiOyfz/VXDdb9WX1z9GSvp2rIz8nadNcms0lfUrSAknLJV0tab8xfs+hWd26Mjvmf1XStu1+h6Qp2fK/Z/Xu7yS9ILe8UU8fK+leSXc16mNJr5L056x+v03SO8a10ayUJD1L0pVZHD8k6QJJu2bLNpH0gWz/r8zq3sNy750g6URJt2Rx8mdJr84tb3Sl905J87Pj+nOyZc+XdE0Wlwuy9kT+aYq9gLOAM4H39WRjWCmVMUaVbqr9FPh6U3ZvAQTs2t2tYu0aKQZy+//Fki7NYujufHuuxeetbTO2+35JkyWdKWlhFk9XSHr6GNZhFvD37OUFytqjWcye1ZT2c8ranVm65wH/qtz5lqS9JP0kK08PKbV5d2hax4skfUvpWsO3tWE3WcrKTaOdsEzSzyU9td31svHTKNeFsn32AaVrQYuUdW0r6TWSfp/F7Eql9uM/N33267Jy84ikS4BpTcs36P5L0ru07hyoUf7+W9LflK5JLZZ0oaRdsuXn0uLcXtL2kr6exedypesBuzV916GS/pjl72pgveVWfRr5+D/iNdNhPu+ZSufuD2fvuUXSsbnlRyud0703+3uL0jWwh9TU9aOkn0mqd5flEeHJU8sJuBiYD7wK2J90srYa+Ey2/FvAUuBtwIuAK4BBYH7uM/4re8/JwAtIjyoPAa8oev08lX8CAniMdLHgQOCUbN47cmm+BqwA3gMcAnwDWAU8J1u+f/aeOdnrY7IY/BTwQuDsLG4DmJWluSL73l9kn/kGYBnwvWz544EfA7cB+wJTi95WngqJz08Ad+ReH5bF0e25ea8GHiFdOLgP+CNwOPBvwK2kx9w3y9KeC/wl+1/Ar4F7gddl7/lzFqtXZGlmZd/3KPCRrIyck817cZZm3+z1GcDTi95mnjoegwE8nNWRB5G6AgvgLbk0PwCWkLpzOBj4PrAceEKb37FrFnenZ/Xpa4EHgPPa+Q7SD2R+BTwIHAv8C6nP4DXAC7P3N+rpBcCLgddm84/K5p9FakN8OHvfe4ve9p46GsdbAIuA87J67OXZ8fU32fIzsnruQ1mcn53FwXOz5eeR2gEnZHHypSxu3pgtb9SVS4Ejszp1YvZZa4Bvk47178w+5/O5vG0L7JT9f3T2OdsVvc08OUZHye+XSW2PyUVvO09r98mwMZDb/w+SjuMH5pb/S/b+xnGycT5zLuvajO28X8Bc0vH7TaRz90tJx+7Ht7kOE0nt0QDeDzw5mz8fOKsp7efIrgkATya1d39FapdOBPYGVmZ5ejGpbXEH8NdG3GbruBq4MCsLB7TYDieQ2ijvJN0YORq4G/hDLi9XABcXHQN1nhjlulC2z1YBbwFeAewAHEE6J/9Itl+PBG4infs0zo1ewbp24Auzv6vIHYtb7V/gXUDkXp8FPAT8RxYnb81if9hze1LXujcCtwOvyWL/d8BdwDbZ+/Zl/Tr6f1h3XWFO0fvFU0die7Tj/4jXTHPxf0L2/0zSseB84Pmk86IfZWn2ytIcncXVTVncH0H6Ec3ac/ws3Yws3UuL3k5d3QdFZ8BTOSdgEqlv1EOa5v8AuBbYPSs0R+eWbQEszB2ctiY1mE9p+oz/B9xW9Dp6Kv+UxdilTfNuAC7M/t+D3ElfLs1c4LLs//1Zv3G7ADi3KX3jQDEre31FdnDaIpfmDOCh3OtzyU4WPPXnRGr0BtnJHukE7bps3uOyeecCPwE+Trq4vF3u/btlDY3X5dI2TkCfn33O/rn0O9H6psWXcmk2JTXKT8vNW9tQ8lSvKdu3lzTNuw74Ufb/07I0r80t34x0EnZUm9/ROGHcMTfvcOBd7XwH6WJEkN2gyKX5DdlFhVw9fUJu+QDpwsM3mt53EunE2BfjajIB/5jt/2fn5j2PdPFt26yePKnpPVcAHwCemr332Kbl5wH3k8agaNSVzRfVfgP8qmnea0k/WpjVIp9H45sWfTlVJUaz5S/M8vOZjVlXT12Jn9Fi4PHZ8i/klg2QbkKcmb1uHCdHumkx0vtfmKU5OJdmU9JTOV8dw7o0vuuI3Lz5LWL3c6z/Q8YryF1YBr5HukmxWW7ek7PYfkduHderc1tsh9OBDzZ997uzNFNafbenjsd3O9eFonkfACc24jM3r3FT7CnZ6+uAnzSl+WE+LlrtXza8afEd4D+a0pwOPJh7vbZMZa+PJdWle+TmTQUWAx/OXl9IurCsXJoz8jHqqdoTIx//t2CEa6a512vPcUg3KX4BTMgt3zZL8/bs9dE01bPZ/OtZ/0dj7yJds9psvOtZ5sndQ1lLETEYES+IiEuzR05fIOl4UmNiIqmgAlyUe89K0h3qhn1JNz9+rNSFz6ZKXVb8BJjd/Gid2TCubno9n3RDDFLDFeCSphi7BHhui8fnnkgaBO6ips+8oMX3/imL6VbfawYpNpeSfnUBKR6/RHoq57nZvOeT4vEA0sWHh3NxehepoXsQG9ofWBIRVzRmRMQ9bFgeyM+LiDWkG3Nbb9wqWQU19+28AJic/f+c7O+PGgsjYlVE7BkR/0t7/kD6BfHvlLp42h/4YUR8rs3v+GdgWUT8tOlzvw3sI2nL3Lybcv/vTrpR16oNsSXwzDbzb+X3V9LN1h9JOkvSvwC/jYj/Ap5Fuqj7o/wbImL/iPgYKb5gw+P4t4HpwJNy89bGl6QtSDF0cVN8XUq62HdAx9bO6qASMSrpQNLF4N8Cw3YtZD03Wgxsnr1eezyPiCHgHtYdz9sx0vsPID3Z8MtcLEG64NaqHdpt/wz8ICJWNWZExE2kH6c9L5fugYh4cLgPiYh3RsRHlbpj3U/Sm0g/loB0zcK6r53rQrB+G4+I+EREvEPS1pL2lXQU8O/Z4olZHbg3qd2X972xZjAijoyIr0raSdKBkt5GOlcbKUYOAOYBt+bKzErgKtaVmX8i/cAyxpM/K7Vhj/8RsXKUa6YbiIifRMTBwCaSnpZ1ldbofrT5PTc1vf468BJJjXr934Fv5+vROvJNCxuWpJdIuo3Ud+U3SRffVpIeL90OWB0RDze9bWHu/0Z/g1eTHpFqTI0G247dybnVzMqm10Osq7saMXY368fYp4EJpDjNa7x+oGn+QjbU6nvVXpatH0TEatJTPQdI2ob0S7orSDcn9pP0FNJF10b/q4ewfpyuzt7Tqi7cjg3jFNqPVR/f+8dI+39bWh+r2xYRt5NOzv4EvAO4HFgg6fA2v2MbWsdtY17+psX9uf8b9fu3WL/M/D6b7zZETUTEMtIFrLmkp3MuAe6T9BZSfMH6sZG3DbAmIh5qmt+Ir6m5efnP2IZUTj7O+vHVSOP4srWqEKNKYwZeQrro+6KIGGxr5awX2o2B8bbnRjtn2oLUtU4+nt5OMfXdSG2D4crEBiTtIemqLN2lwOtJ6wg+b+uVdq4LQdO+lDRD0o9JF4SvIHUxunYx6QdYIj0xlHffWDMo6TmS/kS6ZnAhqbudRxg5RqaRenVoPnd7MevKzDadyJ+V1yjH/9GumW5AaQysz5Ge2LkO+Bjrznma39Nc/32T9DT7SyTtDjwD+L/xrF8VbDp6EutH2S/SLwD+F3heRCzI5p9PunN4DzBB0tZNB6jpuf+XZH8PJ/3ys9ktnc639Z0lpEfn/onUiGj2IOnXug33ZH+nN6Vrfm3WrktJj4fuB9wfEX+T9EtSv6y3AfMi4jZJS0i/FPpwi89Y1mLePbSOS8eqjcUS0rF6q4hoHJOR9GxgcUT8tZ0PiYhfAy/KfvV2EPCfpEE4Z472HaST0R1afOyM7G/zRZx83iH1j/y7Fsv/3k7erRoi4kbgyOwJyf1I/ZN/gdTXNaS6r3EMR9LepJO7h4BNJW3bdEGwEV+LhvnKpdnfU0iP8Te7p8U862NljlFJb87y8gvg8IhY0faKWS9sbAx00hLSBbB/7cJnBxveXJkyyntGahvc3M6XKg1E/yPS9nsqcFNEDEl6K6k7LOuNdq4LtfItYGfg2aTuQtdIOhR4WbZ8MSm2tm9637Sm1yPGn6StSOMO/Ap4eUTcms3/JOlJjuEsIf1g540tlj2a/V3URv6s4oY7/ku6jpGvmbbyQdIYq68jdfG7Iju/ekMb+Vgo6Wekm267AbdGRPMT97XjX2LacPYh3cX7RK7wTSY9RtcYIHYIeEnjDVkhPiT3GdeQLiRvHxHXNibgKaQLd/71g43Xr0hxtGVTjB1M6s90TVP6u0jdPL2kaf5LN+K7H9uI91j9/IR0gvUG0uPCAFeSTp4av3qEFKt7AH/OxelfSBc7nsuGrgS2ktToUgBJ00kN+7Ea2oj3WD00ug57UWNGdqw+n9RYHpWkN0q6XdKE7DHoH5EGm92E1N3eaN/xK2BLSc0XEI4knaQO92vgv5JOBnduqt+nAScDW7WTfys/SYdIul/S9Kxrsbmkp3ogxcEacvGVORt4Lym+II29knck6QLdvFbfmf1y7k+kMYny8bWK9Mv2Xca7XlYfZY5RSYeRblhcSHrCwjcsyme0GGj1w6tu5GE6sLwpnl7Dui552tHq/Gcp6cliYO3NhOc0pWl+36+Al+a78pX0JFL7+ddt5mU68ATgnIj4S9YlFqy7HuFrDb3RznWhVp5N6trmmqx7W3LvUUQ8Qury7PCm9x3a9Hq9+Mvsl/t/D9ITEZ/L3bAYIP0iPh8jrWJ0N9K4HI3y8gfSNYZGfX858OJcd2ut8mcVNsrxfxYjXzNt5dmk8S4uyB2vx1JnfZ10U/bl9MFTFuAnLWx4fyRV3KdK+iLpsb8TSBfnHo2IWyV9EzgjK5h3kB7p2zH7n4h4QNIZwGeyrlN+R7qb/VFSH5ZLMRuHiLhe0veAb0j6COmXOfuTLqh9Mvu1TT79kKSTgS9Lup/0mN+hrGsMjeXi7sPAzpKeTzrwLB7n6lgFRcRdkm4iNdQbDZjfkX6B8yzWPVlxGukC7k8knU46QX0PqeHyoRafe3n2uPu3JJ1IehrjQ6RxgsZ6E+Jh0hgvV0XENWN8r1VYRFwn6WLgTElTgVuBN5P6uD67zY+5EjiT9GTFF0iN8w+RnnS4PiJWj/IdC0g/YviGpA8Cd5K6b3gW6/qdbpX3NVm9flpWj88lnTx+nHSRz09a1MfvSCdqF0o6lXRR9l2kumsuaaygD0laTbpg8ApSe/JtEXFD1g44TWl8lBtIP0T4t2z5eu2AJh8GLsqehPs+qa17CqmO/XPnV9MqrJQxKmlS9t33kgZ/3afps/7smxjFGy0G6M2PS35E6l7xEkn/TToWvzz7/jeP4XMaT0EeLGleRPyJ9AOe90h6B6kP9mNJvz5fnnvfw8DeSuNiXUO6HnA1qV38WdIPEU4h/bisrTG3sl8d3wm8S9JC0rWLo1h3QXmLMayXbaR2rgsN4/fA0ZJuID1VcTjwlmxZY9/9F3CppK+RxoA5kA1vYvwE+GLWZvwl6Vfoz8gt/yvpPOokSZuQxpB5G/A0ICQpG5PiYXLn9sBXs/X4uaSPk54OOoZUbhrt149maS+S9HlgL1KXa1YfIx3//84I10yH+bzfAydKejuprfmPpGN90F6d9QPScX8fNrwRXk9RgtHAPZVzAl5N6sJpkNSA+AKpUfMY6W72ZFKBeYh0h/ts0sHkhtxnDJC6kbiVVHDnk/ptm1j0+nkq/0SqvE9omncRcEXu9UTgVNJTFI8CfyP9sk3Z8v2zz5mTe8+7SY2oR0kD0H0kS7NttvwK4OKm731XqjLXvt49Kx+PAkcWva08FTeRxlAJYK/cvMuBFfm6jvSY6MWkhvPSLM1zcsvPBf6Se7098J0s/SJSw/hK0iDIkH7dEcARTfm5Hjg39/odpJPMh4BNi95enjoae+3UkVsAp5P62F2exd3Tx/g9B7Nu4PmlpAbz49v9DlK/xGeTxmlZmX3WIbnlG9TTuWX/QXoq6VFSFwRfALYpett76uxEusDwc9KFixXAZcAzsmWbkC5c3JnFz++Ag3LvbbQD7ia1Wa8HXpNb3rKuzJa9mHQCOUj6xfM3gV2GyePR2edsV/T28tT7qYwxmqs7h5s2qFM9FRY/w8bAcPufXHuu+ThJrs3Yzvuz11uTjsULSf353wAcvRHr8omsDNyQvd6SdKNhKamteTrphznzc+/5J9KPGAbJ2r7ZvCuzvDxI+gXxjNx71q5jbl7zdngGqU2xgnTz7gekC9sB/FuW5gqazus8dTy+R7wuROv26uOBn5LOcx4g3QDej9SOPDGX7qWki7uDpKfa30ruWEz6IfZnsxhaRvr1+b+z/nn787Py8AjpmsE3STcfAtg3S7PBuT2p+6rzsvVaQbrh9qKm9Xgu6YmQR7LveA2uf2s1MfLxf8RrplmatfFPOmf6chbzy0jjWhyVlYVLszRHM0J7k/Qjhl8VvV16NTUu6pmNiaTtgBcAP4r0+HJj/tXAfRHxsmHfbFYgSa8GfhMRf8/N+xhwbES4D0orBUm7kX55cWFkj0xnvw6aD1wQEccXmD0zMzMzM+tzvi5k1jvZE5Z3A++LiK8UnZ9ecPdQtrEeId1FfIWkL5H6cn0FsC/pTrZZWf0H8P7sEdIHSReG3wV8qsA8mTUT6ZdCz5d0HqlLnjeS+u/9cpEZs3pQ6kNkk9HSxbp+hs3MzKyGsj7+RxvvNCLCY/pZM18XMuuyrLv944ADSGXsW8XmqHc8ELdtlEj9o74AmEJ69O+HpH4BXxxpcBqzsvp30pgtnyc9hvdG4CRSF1FmpRARt5Meh34yqbuf80mDyO0fETcXmDWrj6NIY6uMNpmZmVm9fZXR2wM+x7cN+LqQWU8MksZimU3qWnBlwfnpGXcPZWZmZtZnJE0jDWw9ooi4tgfZMTMzs4JImkUaRHYkyyLilh5kx8zMDPBNCzMzMzMzMzMzMzMzKwl3D2VmZmZmZmZmZmZmZqXgmxZmZmZmZmZmZmZmZlYKvmlhZmZmZmZmZmZmZmal4JsWZmZmZmZmZmZmZmZWCv8fX8ED1pxjRQgAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Erzeuge Pair Plot\n",
"sns.pairplot(students_sample_clean)"
]
},
{
"cell_type": "markdown",
"id": "e43a6f0f-8dc4-4437-a7a7-65a902d8e86c",
"metadata": {},
"source": [
"Es fällt sofort auf, dass die Mehrzahl der Variablen nicht linear korreliert zu sein scheint. Im Gegensatz dazu scheinen die Variablenpaare `height` und `weight` sowie `score1` und `score2` positiv korreliert zu sein."
]
},
{
"cell_type": "markdown",
"id": "f77be16d-3022-4e88-97cd-6e5ca81a18c7",
"metadata": {},
"source": [
"### Rangkorrelationskoeffizient nach Spearman"
]
},
{
"cell_type": "markdown",
"id": "ca1357a5-8b55-42c5-a9ec-f1454e52debb",
"metadata": {},
"source": [
"Der Rangkorrelationskoeffizient nach Spearman ({cite:p}`fahrmeirstatistik` s.133), auch bekannt als Spearmans $\\rho$, ist ein nichtparametrischer Rangkorrelationskoeffizient. Er wurde von Charles Spearman entwickelt und ist eine Alternative zum Produkt-Moment-Korrelationskoeffizienten von Pearson. Der Spearman $\\rho$ Rangkorrelationskoeffizient wird für Stichprobendaten mit $r_s$ und für Grundgesamtheitsdaten mit $\\rho_s$ bezeichnet (Mann 2012). Der Korrelationskoeffizient bewertet die monotone Beziehung zwischen zwei Variablen und liegt zwischen $-1$ und $1$. Er beschreibt die lineare Korrelation zwischen den Rängen der Daten zu den Variablen $x$ und $y$. Die Spearman-Korrelation ist hoch, wenn die Variablen einen ähnlichen Rang haben, und niedrig, wenn die Variablen einen ungleichen Rang haben."
]
},
{
"cell_type": "markdown",
"id": "9a6b725a-341f-417c-b926-b01cbf5b3361",
"metadata": {},
"source": [
"Um $r_s$ zu berechnen, werden die Daten für jede Variable, $x$ und $y$, getrennt eingestuft. Die Differenz zwischen jedem Paar von Rängen bezeichnen wir mit $d$. Für eine gegebene bivariate Sequenz $(x_1,y_1),(x_2,y_2), \\dots,(x_n,y_n)$ ist Spearmans $r_s$ gegeben durch"
]
},
{
"cell_type": "markdown",
"id": "e1f4cce3-64be-4491-aa95-0874dda280f7",
"metadata": {},
"source": [
"$$ r_s = 1 - \\frac{6 \\sum_{i=1}^n (r_{xi} - r_{yi})^2}{n(n^2 -1)} $$"
]
},
{
"cell_type": "markdown",
"id": "77f0b9d2-44e9-4907-8673-06dd8ecf220a",
"metadata": {},
"source": [
"wobei $r_{xi}=Rank(x_i)$ , $r_{yi}=Rank(y_i)$ , und $n$\n",
"die Stichprobengröße ist.\n",
"\n",
"Im Gegensatz zum linearen Korrelationskoeffizienten von Pearson ist der lineare Koeffizient von Spearman sowohl für quantitative als auch für ordinale Variablen geeignet. Außerdem sind rangbasierte Korrelationen nicht von der Normalverteilungsannahme abhängig und resistenter gegenüber Ausreißern ({cite:p}`fahrmeirstatistik` s.135)."
]
},
{
"cell_type": "markdown",
"id": "18408b91-346c-4b9c-a106-355ccb339f25",
"metadata": {},
"source": [
"### Spearman's Rangkorrelationskoeffizient: Ein Beispiel"
]
},
{
"cell_type": "markdown",
"id": "92a91d30-cfdf-47dd-b8ba-c2255222cb63",
"metadata": {},
"source": [
"Betrachten wir ein Beispiel. Die Bevölkerung einer Gemeinde an einem Fluss ist der Meinung, dass der jüngste Anstieg der Abflussspitzen auf die Abholzung durch ein Holzunternehmen in den letzten Jahren zurückzuführen ist. Wir berechnen den Spearman'schen Rangkorrelationskoeffizienten, um festzustellen, ob es eine Korrelation zwischen dem Spitzenabfluss und dem Anteil der abgeholzten Fläche im Wassereinzugsgebiet gibt (Daten geändert nach McCuen 2003, S. 112)."
]
},
{
"cell_type": "markdown",
"id": "9792c0a1",
"metadata": {},
"source": [
"|Jahr|Abflussspitzen $(m^3s^{-1})$|abgeholzten Fläche (%)|\n",
"|---|:---:|:---:|\n",
"|1982|227|53|\n",
"|1983|249|56|\n",
"|1984|210|57|\n",
"|1985|190|58|\n",
"|1986|314|55|\n",
"|1987|345|54|\n",
"|1988|161|51|\n",
"|1989|266|50|\n",
"|1990|402|49|\n",
"|1991|215|47|\n",
"|1992|164|46|\n",
"|1993|405|44|\n",
"|1994|328|43|\n",
"|1995|294|42|\n"
]
},
{
"cell_type": "markdown",
"id": "c4dcc5b2-5554-47c5-9ac6-10b9d5ceef0a",
"metadata": {},
"source": [
"Lassen Sie uns unsere Datenvektoren konstruieren. Wir ordnen die Abflusswerte der Variablen `Q` und die abgeholzte Fläche der Variablen `logged` zu."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "47f4352b-69c1-4ca3-ae3b-689c47cee6bf",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" Q Logged\n",
"Q 1.000000 -0.340659\n",
"Logged -0.340659 1.000000"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.corr(method=\"spearman\")"
]
},
{
"cell_type": "markdown",
"id": "7bb318d8-1c5e-4bb4-8ed9-af14eb5e30b0",
"metadata": {},
"source": [
"Der Rangkorrelationskoeffizient von Spearman ist nichts anderes als der lineare Korrelationskoeffizient von Pearson für die gerankten Daten. Das Ergebnis der folgenden Codezelle sollte mit den vorherigen Ergebnissen übereinstimmen."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "58eb5f54-6aac-4b0f-b4c8-b05982cf3338",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Q
\n",
"
Logged
\n",
"
\n",
" \n",
" \n",
"
\n",
"
Q
\n",
"
1.000000
\n",
"
-0.340659
\n",
"
\n",
"
\n",
"
Logged
\n",
"
-0.340659
\n",
"
1.000000
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Q Logged\n",
"Q 1.000000 -0.340659\n",
"Logged -0.340659 1.000000"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.rank().corr()"
]
},
{
"cell_type": "markdown",
"id": "dfcf3a43-6e99-4c8b-830c-d2b4b03cf566",
"metadata": {},
"source": [
"Perfekt, wir erhielten das gleiche Ergebnis durch alle drei Berechnungen, die einen Spearman's Rangkorrelationskoeffizienten von $r_s = -0,34$ ergeben. Die Ergebnisse deuten darauf hin, dass es keine bis eine schwache negative Korrelation zwischen dem Spitzenabfluss und der Einschlagsfläche gibt. Mit anderen Worten, der Abfluss nimmt tendenziell ab, wenn die Abholzungsfläche zunimmt. Die Wahrnehmung der Bevölkerung kann also durch unsere statistische Analyse nicht bestätigt werden. Es wird empfohlen, einen statistischen Test durchzuführen, um festzustellen, ob das Ergebnis statistisch signifikant ist oder ob die Abweichung nur zufällig ist. Weitere Informationen finden Sie in den Abschnitten über *Hypothesentests*."
]
},
{
"cell_type": "markdown",
"id": "1fee90b4-9b83-4d7a-bbf6-9c4805ea79ad",
"metadata": {
"tags": []
},
"source": [
"## Kontingenzkoeffizient"
]
},
{
"cell_type": "markdown",
"id": "a9463035-137d-45af-b2d7-3da8c0343def",
"metadata": {},
"source": [
"Der **Kontingenzkoeffizient** $C$ ist ein $\\chi ^2$-basiertes Maß für die Assoziation von kategorialen Daten. Er stützt sich auf den $\\chi ^2$-Test auf Unabhängigkeit. Die $\\chi ^2$ Statistik ermöglicht es zu beurteilen, ob eine statistische Beziehung zwischen den Variablen in den Kontingenztabellen (auch bekannt als Kontingenztafeln oder Kreuztabellen) besteht oder nicht. In dieser Art von Tabellen wird die Verteilung der Variablen in einem Matrixformat dargestellt.\n",
"\n",
"Für die Berechnung des **Kontingenzkoeffizienten** $C$\n",
"zu berechnen, müssen wir die $\\chi ^2$-Statistik im Voraus bestimmen."
]
},
{
"cell_type": "markdown",
"id": "71b13565-65dd-4de9-93b9-59affc85484b",
"metadata": {},
"source": [
"### Berechnung der $\\chi ^2$-Statistik"
]
},
{
"cell_type": "markdown",
"id": "b1b65f06-14fc-4dc2-ac10-19ebdc727ecc",
"metadata": {},
"source": [
"Die $\\chi ^2$-Statistik ist gegeben durch\n",
"$$\\chi^2= \\sum{\\frac{(O-E)^2}{E}}\\text{,}$$"
]
},
{
"cell_type": "markdown",
"id": "02d3cb07-5eec-46a8-93af-04abf681f398",
"metadata": {},
"source": [
"wobei $O$ für die beobachtete Häufigkeit und $E$ für die erwartete Häufigkeit steht. Bitte beachten Sie, dass $\\frac{(O-E)^2}{E}$ für jede Zelle ausgewertet und dann aufsummiert wird."
]
},
{
"cell_type": "markdown",
"id": "7bfd55cd-117a-48f5-9b33-1a08b7afb024",
"metadata": {},
"source": [
"Anhand eines Beispiels soll die Berechnung der $\\chi ^2$-Statistik auf der Grundlage kategorialer Beobachtungsdaten näher erläutert werden. Nehmen wir eine Prüfung am Ende des Semesters. Es gibt drei Gruppen von Studierenden: Die Studierenden haben entweder bestanden, nicht bestanden oder nicht an der Prüfung teilgenommen. Außerdem wird die Anzahl der Übungen, die jeder einzelne Studierende während des Semesters absolviert hat, in vier Gruppen eingeteilt: Keine, weniger als die Hälfte $(\\lt 0,5)$, mehr als die Hälfte $(\\ge 0,5)$, alle.\n",
"\n",
"Die resultierende Kontingenztabelle sieht wie folgt aus:"
]
},
{
"cell_type": "markdown",
"id": "ebb607b3",
"metadata": {},
"source": [
"| |Keine|$<0,5$|$\\geq 0,5$|Alle|\n",
"|---|:---:|:---:|:---:|:---:|\n",
"|erfolgreich|12|13|24|14|\n",
"|nicht erfolgreich|22|11|8|6|\n",
"|nicht teilgenommen|11|14|6|7|"
]
},
{
"cell_type": "markdown",
"id": "aa5b9b96-b967-49c5-a577-9b0caaff810f",
"metadata": {},
"source": [
"Zunächst konstruieren wir ein `dataframe` Objekt und geben ihm den Namen `obs`, um uns daran zu erinnern, dass diese Daten der beobachteten Häufigkeit entsprechen:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "1771c998-9f0f-4919-a6c9-b4bfbbcbdd82",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Keine
\n",
"
<0.5
\n",
"
>0.5
\n",
"
Alle
\n",
"
\n",
" \n",
" \n",
"
\n",
"
erfolgreich
\n",
"
12
\n",
"
13
\n",
"
24
\n",
"
14
\n",
"
\n",
"
\n",
"
nicht erfolgreich
\n",
"
22
\n",
"
11
\n",
"
8
\n",
"
6
\n",
"
\n",
"
\n",
"
nicht teilgenommen
\n",
"
11
\n",
"
14
\n",
"
6
\n",
"
7
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Keine <0.5 >0.5 Alle\n",
"erfolgreich 12 13 24 14\n",
"nicht erfolgreich 22 11 8 6\n",
"nicht teilgenommen 11 14 6 7"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Erzeuge neues Dataframe obs\n",
"col1 = [\"erfolgreich\", \"nicht erfolgreich\", \"nicht teilgenommen\"]\n",
"col2 = [12, 22, 11]\n",
"col3 = [13, 11, 14]\n",
"col4 = [24, 8, 6]\n",
"col5 = [14, 6, 7]\n",
"\n",
"obs = pd.DataFrame(\n",
" {\"Keine\": col2, \"<0.5\": col3, \">0.5\": col4, \"Alle\": col5}, index=col1\n",
")\n",
"obs"
]
},
{
"cell_type": "markdown",
"id": "9996d860-bf3c-442c-94d1-5fff1249e69a",
"metadata": {},
"source": [
"Perfekt, jetzt haben wir eine ordentliche Darstellung unserer Daten in Python. Allerdings fehlt noch ein Teil, um eine Kontingenztabelle zu vervollständigen. Die Zeilensummen und Spaltensummen.\n",
"\n",
"Es gibt mehrere Möglichkeiten, die Zeilen- und Spaltensummen in Python zu berechnen. Unter anderem kann man die Funktion `sum(df, axis=0,1)` verwenden. Die Funktion benötigt zwei Argumente, die Daten und eine Zahl, die angibt, ob die Daten zeilen- oder spaltenweise vorliegen."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "9d26a031-08ca-42e6-aa15-46f6533b2fa3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Spaltensummen: [45 38 38 27]\n",
"Zeilensummen: [63 47 38]\n"
]
}
],
"source": [
"# Berechne Zeilen/Spaltensumme\n",
"columnsum = obs.sum(axis=0).values\n",
"rowsum = obs.sum(axis=1).values\n",
"\n",
"print(f\"Spaltensummen: {columnsum}\")\n",
"print(f\"Zeilensummen: {rowsum}\")"
]
},
{
"cell_type": "markdown",
"id": "3597dbff-5c90-4f73-86ba-152b1fd5d3a6",
"metadata": {},
"source": [
"Setzt man alle Teile zusammen, sieht die Kontingenztabelle wie folgt aus:"
]
},
{
"cell_type": "markdown",
"id": "5497a779",
"metadata": {},
"source": [
"| |Keine|$<0,5$|$\\geq 0,5$|Alle|Zeilensumme|\n",
"|---|:---:|:---:|:---:|:---:|:---:|\n",
"|erfolgreich|12|13|24|14|63|\n",
"|nicht erfolgreich|22|11|8|6|47|\n",
"|nicht teilgenommen|11|14|6|7|38|\n",
"|Spaltensumme|45|38|38|27|"
]
},
{
"cell_type": "markdown",
"id": "fab7c10f-3935-483f-860f-b370e3cf8471",
"metadata": {},
"source": [
"Toll, jetzt haben wir eine Tabelle mit den beobachteten Häufigkeiten. Im nächsten Schritt berechnen wir die erwarteten Häufigkeiten. Um die erwarteten Häufigkeiten $(E)$ zu berechnen, wenden wir diese Gleichung an:"
]
},
{
"cell_type": "markdown",
"id": "ed9467fd-ccf1-479d-9ac1-8aa4bc0ba38c",
"metadata": {},
"source": [
"$$E = \\frac{R\\times C}{n} \\text{,}$$"
]
},
{
"cell_type": "markdown",
"id": "aa82290f-513e-483b-b662-46deac5310d1",
"metadata": {},
"source": [
"wobei $R$ die Zeilensumme, $C$ die Spaltensumme und $n$ der Stichprobenumfang ist. Bitte beachten Sie, dass wir die erwartete Häufigkeit für jeden einzelnen Tabelleneintrag berechnen müssen, d. h. wir müssen $3 \\times 4=12$ Berechnungen durchführen. Auch hier bietet Python mehrere Möglichkeiten, diese Aufgabe zu lösen. Man kann eine verschachtelte for-Schleife bauen, um jede Zelle zu durchlaufen und die Berechnungen schrittweise durchzuführen, das ist definitiv in Ordnung! Wir können aber auch die vektorisierte und damit viel schnellere Funktion `outer()` in Kombination mit der Funktion `sum()` verwenden. Wir weisen das Ergebnis einer Variablen mit der Bezeichnung `exp` zu, um uns daran zu erinnern, dass diese Tabelle den erwarteten Häufigkeiten entspricht."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "c50de33e-4a97-4aab-a0a8-0693a725de1c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[19.15540541, 14.29054054, 11.55405405],\n",
" [16.17567568, 12.06756757, 9.75675676],\n",
" [16.17567568, 12.06756757, 9.75675676],\n",
" [11.49324324, 8.57432432, 6.93243243]])"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"exp = np.outer(columnsum, rowsum) / sum(columnsum)\n",
"exp"
]
},
{
"cell_type": "markdown",
"id": "62fb9b49-0ace-4f24-802a-5dfbb0050122",
"metadata": {},
"source": [
"Im nächsten Schritt erstellen wir aus den Ergebnissen einen Dataframe der dieselbe Spalten- und Zeilenanzahl, denseben Index und dieslelben Spaltennamen hat wie der `obs` Dataframe."
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "81cd6a2e-acd7-4edf-9991-b816e7b62308",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Keine
\n",
"
<0.5
\n",
"
>0.5
\n",
"
Alle
\n",
"
\n",
" \n",
" \n",
"
\n",
"
erfolgreich
\n",
"
19.155405
\n",
"
16.175676
\n",
"
16.175676
\n",
"
11.493243
\n",
"
\n",
"
\n",
"
nicht erfolgreich
\n",
"
14.290541
\n",
"
12.067568
\n",
"
12.067568
\n",
"
8.574324
\n",
"
\n",
"
\n",
"
nicht teilgenommen
\n",
"
11.554054
\n",
"
9.756757
\n",
"
9.756757
\n",
"
6.932432
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Keine <0.5 >0.5 Alle\n",
"erfolgreich 19.155405 16.175676 16.175676 11.493243\n",
"nicht erfolgreich 14.290541 12.067568 12.067568 8.574324\n",
"nicht teilgenommen 11.554054 9.756757 9.756757 6.932432"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"exp = pd.DataFrame(np.transpose(exp), index=obs.index, columns=obs.columns)\n",
"exp"
]
},
{
"cell_type": "markdown",
"id": "ec2a8031-785e-4c46-827f-2b0b30444cfd",
"metadata": {},
"source": [
"Im nächsten Schritt berechnen wir schließlich die $\\chi ^2$-Statistik. Erinnern Sie sich an die Gleichung:"
]
},
{
"cell_type": "markdown",
"id": "ed08ce4e-34e7-4911-ab0a-af94fda346f3",
"metadata": {},
"source": [
"$$\\chi^2= \\sum{\\frac{(O-E)^2}{E}}\\text{,}$$"
]
},
{
"cell_type": "markdown",
"id": "313b8a70-edc0-4fae-a26d-5c05ea512644",
"metadata": {},
"source": [
"wobei $O$ für die beobachtete Häufigkeit und $E$ für die erwartete Häufigkeit steht."
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "242261dd-782d-419a-be50-d696015a990b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"17.344387665138406"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Berechne chisqVal\n",
"chisqVal = np.sum(((obs.values - exp.values) ** 2) / exp.values)\n",
"chisqVal"
]
},
{
"cell_type": "markdown",
"id": "08f5bf6c-6d5c-48fd-955d-503c6e9f461d",
"metadata": {},
"source": [
"### Berechnung des Kontingenzkoeffizienten $C$"
]
},
{
"cell_type": "markdown",
"id": "2b0e74a5-3c33-4a45-a246-886f29340218",
"metadata": {},
"source": [
"Der Kontingenzkoeffizient, bezeichnet als $C^∗$, passt die $\\chi ^2$-Statistik um den Stichprobenumfang $(n)$ an. Er kann wie folgt geschrieben werden"
]
},
{
"cell_type": "markdown",
"id": "8d58a9f4-21a7-4d73-8b4c-6ab23cd4ceac",
"metadata": {},
"source": [
"$$ C^*=\\sqrt{\\frac{\\chi^2}{n+\\chi^2}}\\text{,} $$"
]
},
{
"cell_type": "markdown",
"id": "ef5db661-f076-4365-bdc3-c9ff810b0a0f",
"metadata": {},
"source": [
"wobei $\\chi ^2$ der $\\chi ^2$-Statistik entspricht und $n$ die Anzahl der Beobachtungen bezeichnet. Wenn keine Beziehung zwischen zwei Variablen besteht, ist $C^∗=0$. Der Kontingenzkoeffizient $C^∗$ kann Werte $\\gt 1$ nicht überschreiten, aber der Kontingenzkoeffizient kann kleiner als $1$ sein, selbst wenn zwei Variablen perfekt miteinander verbunden sind. Dies ist nicht so wünschenswert, daher wird $C^∗$ so angepasst, dass er maximal $1$ erreicht, wenn in einer Tabelle mit einer beliebigen Anzahl von Zeilen und Spalten ein vollständiger Zusammenhang besteht. Daher berechnen wir $C^{∗}_{max}$, das ist"
]
},
{
"cell_type": "markdown",
"id": "ade34044-1d39-446d-a258-5da1619eadc0",
"metadata": {},
"source": [
"$$ C^*_{max}=\\sqrt{\\frac{k-1}{k}}\\text{,} $$"
]
},
{
"cell_type": "markdown",
"id": "58017413-45bb-4147-9391-e79c57ad3ffe",
"metadata": {},
"source": [
"wobei $k$ die Anzahl der Zeilen oder die Anzahl der Spalten ist, je nachdem, welcher Wert kleiner ist, $k=min(\\text{Zeilen,Spalten})$. Dann wird der bereinigte Kontingenzkoeffizient wie folgt berechnet"
]
},
{
"cell_type": "markdown",
"id": "bf166349-02d7-44e7-8e64-c0ea978c9b9c",
"metadata": {},
"source": [
"$$ C=\\frac{C^*}{C^*_{max}}=\\sqrt\\frac{k \\cdot \\chi^2}{(k-1)(n+\\chi^2)} $$"
]
},
{
"cell_type": "markdown",
"id": "b9a53f9e-8425-4de3-8407-ac180b4edb84",
"metadata": {},
"source": [
"Im obigen Abschnitt wurde die $\\chi ^2$-Statistik der Variablen `chisqVal` zugeordnet und als $17,3443877$ berechnet. Nun setzen wir diesen Wert in die Gleichung für den Kontingenzkoeffizienten $C^∗$ ein."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "f8bc7757-5619-403e-8484-ebc5ab8412d7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.3238804670641156"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"C_star = np.sqrt(chisqVal / (sum(columnsum) + chisqVal))\n",
"C_star"
]
},
{
"cell_type": "markdown",
"id": "e425140c-7429-4b15-9d2b-5fad03567a0d",
"metadata": {},
"source": [
"Der Kontingenzkoeffizient $C^∗$ beläuft sich auf $0,3238805$.\n",
"\n",
"Nun wenden wir die Gleichung für den bereinigten Kontingenzkoeffizienten, $C$."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "352c1502-6961-4ca2-8042-7ccb370c383a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"k = [obs.shape[0], obs.shape[1]]\n",
"k = min(k)\n",
"k"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "aae5c9e2-d15f-4ec1-8002-d1e152f4b5df",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.39667094098068806"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"C_star_max = np.sqrt((k - 1) / k)\n",
"C = C_star / C_star_max\n",
"C"
]
},
{
"cell_type": "markdown",
"id": "8b03723c-aed8-47b9-b786-8386ea59b95a",
"metadata": {},
"source": [
"Der bereinigte Kontingenzkoeffizient $C$ wird mit $0,3966709$ bewertet. Zur Erinnerung: Der Kontingenzkoeffizient reicht von $0$ bis $1$. Ein Kontingenzkoeffizient von $0,4$ deutet nicht auf einen starken Zusammenhang zwischen den Prüfungsergebnissen und der Bereitschaft der Studierenden hin, die Übungen während des Semesters zu bearbeiten."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.2"
},
"vscode": {
"interpreter": {
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}