{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "de4fff03-e301-4e32-a8c4-0330f4eb621a", "metadata": { "tags": [ "remove-cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "---------------------------------\n", "Working on the host: Joachims-MacBook-Pro.local\n", "\n", "---------------------------------\n", "Python version: 3.10.2 | packaged by conda-forge | (main, Feb 1 2022, 19:30:18) [Clang 11.1.0 ]\n", "\n", "---------------------------------\n", "Python interpreter: /opt/miniconda3/envs/srh/bin/python\n" ] } ], "source": [ "%matplotlib inline\n", "# Load the \"autoreload\" extension\n", "%load_ext autoreload\n", "# always reload modules\n", "%autoreload 2\n", "# black formatter for jupyter notebooks\n", "#%load_ext nb_black\n", "# black formatter for jupyter lab\n", "%load_ext lab_black\n", "\n", "%run ../../src/notebook_env.py" ] }, { "cell_type": "markdown", "id": "be57a36e-861a-4f94-b943-22538dafb52c", "metadata": {}, "source": [ "# Die Poisson-Verteilung" ] }, { "cell_type": "code", "execution_count": null, "id": "e15bba1d-93e6-4a1c-86dd-bc5b596a9a88", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from scipy.stats import poisson" ] }, { "cell_type": "markdown", "id": "773e377a-d81a-45b5-baff-cd20ea7b876e", "metadata": {}, "source": [ "Eine weitere wichtige diskrete Wahrscheinlichkeitsverteilung ist die Poisson-Verteilung, benannt zu Ehren des französischen Mathematikers und Physikers Simeon D. Poisson (1781-1840). Die Poisson-Verteilung wird häufig verwendet, um die Wahrscheinlichkeit zu beschreiben, dass eine Reihe von Ereignissen in einem bestimmten Zeit- oder Raumintervall eintritt, wobei die Wahrscheinlichkeit des Auftretens dieser Ereignisse sehr gering ist ({cite:t}`Papula2011` s.367). Da die Anzahl der Versuche jedoch sehr groß ist, treten diese Ereignisse tatsächlich ein." ] }, { "cell_type": "markdown", "id": "c93a0196-7872-42f6-8417-d284a6e4dba3", "metadata": {}, "source": [ "Die Zufallsvariable $X$, die als **Poisson-Zufallsvariable** bezeichnet wird, ist die Anzahl der Ereignisse (oder des Eintreffens) solcher Ereignisse in einem bestimmten Zeit- oder Raumintervall. Eine Poisson-Zufallsvariable hat unendlich viele mögliche Werte, nämlich alle ganzen Zahlen ({cite:t}`fahrmeirstatistik` s.242)." ] }, { "cell_type": "markdown", "id": "0638d682-5b73-4feb-9f82-1350f5b683c1", "metadata": {}, "source": [ "Unter der Annahme, dass $\\lambda$ der Erwartungswert solcher Ankünfte in einem Zeitintervall fester Länge ist, ist die Wahrscheinlichkeit, genau $x$ Ereignisse zu beobachten, durch die Wahrscheinlichkeitsfunktion gegeben" ] }, { "cell_type": "markdown", "id": "77de057f-9ef0-47dc-b2dc-e2aa33c0506f", "metadata": {}, "source": [ "$$P(X = x) = e^{-\\lambda}\\frac{\\lambda^x}{x!}, \\qquad x = 0, 1, 2,\\dots ,$$" ] }, { "cell_type": "markdown", "id": "d84ed2b4-82ff-4c94-83f1-6d0eb03fab43", "metadata": {}, "source": [ "wobei $\\lambda$ eine positive reelle Zahl ist, die die durchschnittliche Anzahl der Ereignisse während eines festen Zeitintervalls darstellt, und $e≈2,7182818$ (die Eulersche Zahl). Somit wird jede bestimmte Poisson-Verteilung durch einen Parameter identifiziert, der gewöhnlich mit $\\lambda$ (dem griechischen Buchstaben Lambda) bezeichnet wird. Wenn das Ereignis beispielsweise durchschnittlich $10$ Mal pro Sekunde auftritt, tritt es in $60$ Sekunden durchschnittlich $600$ Mal auf und $\\lambda=600$." ] }, { "cell_type": "markdown", "id": "53d5efee-69b1-4b83-9270-17f74572d402", "metadata": { "tags": [] }, "source": [ "## Die Poisson-Verteilung - ein Beispiel" ] }, { "cell_type": "markdown", "id": "c905de6c-2cad-49f2-8b91-b110a81c9de2", "metadata": {}, "source": [ "Wenden wir die Poisson-Verteilung in Form eines Beispiels an. Wir konzentrieren uns auf das Jahrhunderthochwasser, ein Konzept, das im Flussbau häufig zur Planung von Hochwasserschutzmaßnahmen verwendet wird." ] }, { "cell_type": "markdown", "id": "f02db92b-ef68-48f4-9888-0ebee723a0a8", "metadata": {}, "source": [ "Erinnern wir uns an die mathematische Notation einer **Poisson-Zufallsvariablen**:" ] }, { "cell_type": "markdown", "id": "35041259-f619-466d-b68a-498a7bd84263", "metadata": {}, "source": [ "$$ P(X = x) = e^{-\\lambda}\\frac{\\lambda^x}{x!}, \\qquad x = 0, 1, 2, \\dots , $$" ] }, { "cell_type": "markdown", "id": "100cd908-4510-4632-af08-d6e08bbde4bc", "metadata": {}, "source": [ "wobei $\\lambda$ eine positive reelle Zahl ist, die die durchschnittliche Anzahl der Ereignisse während eines festen Zeitintervalls darstellt, und $e≈2,7182818$." ] }, { "cell_type": "markdown", "id": "184360d3-b785-452f-a342-ee92806d061a", "metadata": {}, "source": [ "Das *Jahrhunderthochwasser* ist eine Kurzbezeichnung für ein Hochwasser mit einer jährlichen Überschreitungswahrscheinlichkeit von $1 \\%$ und einem durchschnittlichen Wiederholungsintervall von $100$ Jahren. Der Begriff kann jedoch für Menschen irreführend sein, denn sie stellen sich vor, dass der Begriff Hochwasser beschreibt, die einmal alle $100$ Jahre auftreten. Dies ist jedoch nicht der Fall. Ein Hochwasser mit einer jährlichen Überschreitungswahrscheinlichkeit von $1 \\%$ bedeutet, dass in **jedem** einzelnen Jahr mit einer Wahrscheinlichkeit von $0,01$ ein Hochwasser in einer Größenordnung auftritt, die einem Jahrhunderthochwasser entspricht." ] }, { "cell_type": "markdown", "id": "2b073440-10c0-4220-876a-cb84a1d30a0f", "metadata": {}, "source": [ "Im Rahmen einer Poisson-Verteilung wird der Erwartungswert $E(x)=\\lambda$ eines solchen Hochwassers während des festen Intervalls von $100$ Jahren auf $\\lambda=100×0,01=1$ gesetzt. Die Poisson-Zufallsvariable $X$ ist also die Anzahl der Ereignisse, die natürlich je nach Fragestellung verschiedene Werte annehmen kann. Wir können uns für die Wahrscheinlichkeit interessieren, dass ein solches Hochwasserereignis während des $100$-Jahres-Intervalls nicht auftritt, $P(x=0)$, oder wir wollen die Wahrscheinlichkeit wissen, dass ein solches Hochwasserereignis genau einmal während des $100$-Jahres-Intervalls auftritt, also $P(x=1)$, oder wir wollen die Wahrscheinlichkeit wissen, dass zwei oder mehr solcher Hochwasserereignisse während des $100$-Jahres-Intervalls auftreten, also $P(x≥2)$. Setzt man diese Werte in die obige Gleichung ein, so erhält man" ] }, { "cell_type": "markdown", "id": "c207d89f-981b-407d-8610-c082ee7b035e", "metadata": {}, "source": [ "$\\lambda = 1, x = 0,1,2,\\dots ,n$" ] }, { "cell_type": "markdown", "id": "9f61ebb1-731e-4507-9207-5cc4601f03f5", "metadata": {}, "source": [ "$$P(X = 0) = e^{-1}\\frac{1 \\times 0}{0!}, \\qquad \\text{für } \\ x = 0$$" ] }, { "cell_type": "markdown", "id": "553d02ab-8a5c-46f8-833e-92d8ce496ba8", "metadata": {}, "source": [ "$$P(X = 1) = e^{-1}\\frac{1 \\times 1}{1!}, \\qquad \\text{für } \\ x = 1$$" ] }, { "cell_type": "markdown", "id": "e09ef4f0-abbd-4ab7-a6cd-e6f3798c0cb7", "metadata": {}, "source": [ "$$ P(X \\ge 2) = \\sum_{i=2}^n e^{-1}\\frac{1 \\times x_i}{x_i!}, \\qquad \\text{für } \\ x_i = 2,3,\\dots ,n $$" ] }, { "cell_type": "markdown", "id": "21a40317-1a33-4fde-a0d4-969e3c73f9be", "metadata": {}, "source": [ "Wir wenden uns an Python, um die Berechnungen durchzuführen. Wir werden die Funktionen `poisson.pmf` und `poisson.cdf` verwenden." ] }, { "cell_type": "code", "execution_count": 3, "id": "ff5158e1-b101-4836-945f-0d98b205ec04", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.36787944117144233" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_0 = poisson.pmf(0, mu=1)\n", "x_0" ] }, { "cell_type": "code", "execution_count": 4, "id": "bf07e22f-e02f-4631-8daa-4754e93ad54f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.36787944117144233" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_1 = poisson.pmf(1, mu=1)\n", "x_1" ] }, { "cell_type": "code", "execution_count": null, "id": "96f1a32b-2071-4e5f-8327-f67676cd5416", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "28c8356e-e7f1-43b3-869d-282d0464e451", "metadata": {}, "source": [ "$$ P(X \\ge 2) = 1 - P(X = 1) - P(X = 0) $$" ] }, { "cell_type": "code", "execution_count": 5, "id": "81a67a6c-de3f-4cc3-858c-e7f265220a3f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.26424111765711533" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xge2 = 1 - x_1 - x_0\n", "xge2" ] }, { "cell_type": "markdown", "id": "13a15673-9983-42f7-9c17-2227ba5cfa39", "metadata": {}, "source": [ "Alternativ können wir doe `poisson.cdf` verwenden. " ] }, { "cell_type": "code", "execution_count": 6, "id": "ce30ef7d-72a0-40e0-b807-80b38849a599", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "0.26424111765711533" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1 - poisson.cdf(1, mu=1)" ] }, { "cell_type": "markdown", "id": "8decac1e-fbcd-48de-98ad-9246c8b76124", "metadata": {}, "source": [ "Die Ergebnisse zeigen, dass die Wahrscheinlichkeit, dass während eines Zeitraums von $100$ Jahren kein Hochwasser $P(X=0)$ in einer Größenordnung auftritt, die einem Jahrhunderthochwasser entspricht, $0,37 $ beträgt, was interessanterweise genauso wahrscheinlich ist wie das Auftreten von genau einem Hochwasser $P(X=1)$. Die Wahrscheinlichkeit, dass zwei oder mehr $P(X≥2)$ solcher Hochwasserereignisse innerhalb des $100$-Jahres-Intervalls auftreten, ist $0,26$ und damit geringer. Beachten Sie jedoch, dass die Wahrscheinlichkeit, dass zwei oder mehr $P(X≥2)$ solcher Hochwasserereignisse während des 100-Jahres-Intervalls eintreten, etwa $26 \\%$ beträgt!" ] }, { "cell_type": "markdown", "id": "617223ae-6aab-4524-a036-9b9e33614695", "metadata": {}, "source": [ "Zur Überprüfung der Richtigkeit addieren wir die Wahrscheinlichkeiten $P(x=0), P(x=1)$ und $P(x≥2)$, was $1$ ergeben sollte," ] }, { "cell_type": "code", "execution_count": 7, "id": "46149c48-9ae8-44ff-84bb-3c95c8235920", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.0" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_0 + x_1 + xge2" ] }, { "cell_type": "markdown", "id": "89c5b1e5-76c3-4319-beb2-84c0f979176b", "metadata": {}, "source": [ "Zur besseren Veranschaulichung stellen wir die Wahrscheinlichkeiten der Poisson-Zufallsvariablen $x=0,1,2,3,4,≥5$ dar." ] }, { "cell_type": "code", "execution_count": 8, "id": "ecb12969-ac14-44fb-9133-ecfe436ec026", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Wahrscheinlichkeit (P=X)')" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuUAAAF9CAYAAACj5xZNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABSY0lEQVR4nO3deXxU1fnH8c8TCJEk7DsiIloQUESLC1jXqmgRpIJWK8riTwUXXFAEVAoKLVqtBTfEKlStVnEF2X4WkCJbBQGLCuJPEBFkDfsSCM/vj3sTJ5NMGCDJBPJ9v17zujPnnHvuc+8EfXJz7jnm7oiIiIiISOIkJToAEREREZHSTkm5iIiIiEiCKSkXEREREUkwJeUiIiIiIgmmpFxEREREJMGUlIuIiIiIJFjZRAeQaNWrV/cGDRokOgwREREROcrNnz9/g7vXyK+u1CflDRo0YN68eYkOQ0RERESOcmb2faw6DV8REREREUkwJeUiIiIiIgmmpPwItmDBAs466yzS0tJo0aIFc+bMydPG3RkwYAB169alQoUKXHTRRXz55Zc59atWreLKK6+kYsWK1KtXj+HDhwOwcuVK0tPTc72Sk5Np1KgRAPv27aNXr17Url2batWqcc0117BhwwYAevTokWu/tLQ0zIw33ngDgClTpnD66adToUIFWrVqxdy5c4v6UiWMviMRERGJi7uX6tcvf/lLPxLt2rXLjz32WH/++ec9MzPTX375Za9Tp47v2bMnV7uXXnrJmzRp4qtWrfKsrCx/5JFH/PTTT3d39/379/svf/lLv//++z0zM9MXL17sVapU8ZkzZ+Y53po1a7xu3bo+ceJEd3cfPny4n3vuuZ6RkeHbt2/3Dh06eLdu3fKN9ZFHHvELLrjAMzMzffny5Z6amuojR470vXv3+kcffeRVq1b1NWvWFPIVSjx9RyIiIhIJmOcxclLdKT9CTZs2jaSkJHr27ElycjLdu3enWrVqjBs3Lle7m2++mc8++4xjjz2W9evXs3nzZqpXrw7A3LlzWb16NUOHDiU5OZlmzZoxe/ZsGjdunOd4PXr04JprruHyyy8H4JtvviErK4usrCwAkpKSKF++fJ795s+fz/Dhw3nttddITk5m4sSJnHrqqdxyyy2ULVuWtm3bcvbZZzNmzJjCvkQJp+9IRERE4qWk/Ai1ZMkSmjZtmquscePGuYY9AJgZaWlpjB49mjp16vDqq68yZMgQAD7//HOaNWtGnz59qF27No0aNWLOnDlUq1YtVx9Tp05l5syZDB48OKfs1ltvZcWKFVSvXp2KFSvy7bff8qc//SlPnPfeey/9+vXjuOOOAyArK4vU1NRcbZKSkli2bNmhX4wSSt+RiIiIxEtJ+RFqx44deRKn1NRUdu7cmW/766+/nt27d/Pwww/Tpk0bNm3axKZNm5g2bRrVq1dn5cqVjB49mrvuuosZM2bk2vdPf/oTvXv3Jj09Padsz549tG/fntWrV7Nu3TqOO+44brvttlz7zZw5k6+++oo77rgjp6xNmzbMnTuXMWPGsHfvXiZNmsTUqVPZvXv34V6SEkffkYiIiMRLSfkRKjU1lV27duUq27lzZ66kLFJKSgrlypXj/vvvp2LFinzyySekpKRQtWpV+vXrR7ly5WjdujUdO3bkww8/zNnvhx9+YPr06dx88825+uvatSu/+93vqFOnDtWqVeMvf/kLb731Flu3bs1pM2rUKDp37pwrpl/84he8/fbbDB48mDp16vDGG29www03ULly5UK4KiWLviMRERGJl5LyI1STJk1YunRprrKlS5fmGS7xhz/8gYceeijns7uTmZlJ5cqVady4MTt27GDfvn059VlZWQTPIQQ++ugjLrzwQmrUyL341MqVK9mzZ0/O5+TkZMyMsmV/Xo9q3LhxXHvttbn227ZtG/Xr12fRokVs2LCBV199lf/+97+cfvrph3AVSjZ9RyIiIhK3WE+AlpbXkTr7yu7du71u3bo+fPjwnJk9atSo4du3b8/VbsKECV6lShVfuHCh79mzx//whz9448aNfdeuXb5z504/9thjvXfv3r53716fOXOmp6en++zZs3P2v+mmm3zAgAF5jn/dddd5y5Ytfd26db5161a/9tprvX379jn13333nScnJ+eZaWT58uWelpbm8+fP9z179vhzzz3nderUyRP30UDfkYiIiESigNlXEp4UJ/p1pCbl7u6LFi3yVq1aeXp6urdo0SInUbvtttv8tttuy2k3YsQIP+GEE7xKlSretm1bX758eU7dsmXLvE2bNl6lShU//vjj/ZVXXsl1jPPPP99feOGFPMfOyMjw7t27e82aNb1GjRp+4403+saNG3Pqp06d6rVq1co37tdee80bNGjgFSpU8AsuuMAXL158OJehRNN3JCIiItkKSsotqC+9WrZs6fPmzUt0GCIiIiJylDOz+e7eMr86jSkXEREREUmwsgduIkWlQd/xiQ7hqLJiaNtC71PfUeEqiu9IRETkaKA75SIiIiIiCaakXEREREQkwZSUi4iIiIgkmJJyEREREZEEU1IuIiIiIpJgSspFRERERBJMSbmIiIiISIIpKRcRERERSTAl5SIiIiIiCZaQpNzMbjGzZWa2y8xmm1mrA7RvY2afmdmOcL+7zMyi2iw2M496bSjaMxEREREROXzFnpSb2U3ACOB1oCOwGZhsZifEaN8K+AhYDFwFvAT8Bbgnok05oBHQF2gV8WpTRKchIiIiIlJoyhbnwcK7248CI919UFj2MbAUuBfolc9u9wJfAt3d3YF/mVkT4A7g6bBNUyAZ+NDdlxTtWYiIiIiIFK5iTcqBk4DjgbHZBe6+18zGA5fH2Kc3kB4m5NkygZSIz82B3cCywg1XRERERKToFffwlUbh9tuo8u+AE82sTPQO7v6Du38NYGaVw+Ev2UNgsjUHNgJvmdlWM9tiZn8zswqFfwoiIiIiIoWruO+UVwy326LKtxH8gpAGbM1vRzM7HlgRfpwHvBBR3RyoDSwChgEtCIbJnAD8Op++bgVuBahfv/5Bn4SIiIiISGEq7qQ8e8YUj1G+v4B9twIXEyTfjwGzzex0d98JPAikuPucsO0MM1sH/NPMznP3GZEduftIYCRAy5Yto2MRERERESlWxZ2Ubwm3FYC1EeXpBAn5jlg7unsGMA2C6Q+BLwhmb3nN3Rfks8ukcHsaMCOfehERERGREqG4x5RnP4jZMKq8IbA06mFOAMysg5mdGVW8GNgLHGtmZc2sq5mdHtWmfLjVXOUiIiIiUqIlIin/AeiQXWBmyUBbYEqMffoCT0aVXUQwBeJ/3X0fMAgYGNWmI0HiPvtwgxYRERERKUrFOnzF3d3MhgLPmlkGMBO4E6hOOOe4mZ0I1IgYHz4EGGtmLwJvE8zg8ijwCTAhos2LZjYMGAecCQwAhrv798VxbiIiIiIih6q4x5Tj7s+bWXngboKFgRYCbdz9u7DJI0AXwoc/3X2cmV0Vlt9IsALoa8DD2cNd3H2kmWUC9xHMqvITwcOgQ4vptEREREREDlmxJ+UA7v4U8FSMuq5A16iysUQsOBRjv9HA6MKIT0RERESkOBX3mHIREREREYmipFxEREREJMGUlIuIiIiIJJiSchERERGRBFNSLiIiIiKSYErKRUREREQSTEm5iIiIiEiCKSkXEREREUkwJeUiIiIiIgmmpFxEREREJMGUlIuIiIiIJJiSchERERGRBFNSLiIiIiKSYErKRUREREQSTEm5iIiIiEiCKSkXEREREUkwJeUiIiIiIgmmpFxEREREJMGUlIuIiIiIJJiSchERERGRBFNSLiIiIiKSYErKRUREREQSTEm5iIiIiEiCKSkXEREREUkwJeUiIiIiIgmmpFxEREREJMGUlIuIiIiIJJiSchERERGRBFNSLiIiIiKSYAlJys3sFjNbZma7zGy2mbU6QPs2ZvaZme0I97vLzCyqzXlmNtfMdoZtuhftWYiIiIiIFI5iT8rN7CZgBPA60BHYDEw2sxNitG8FfAQsBq4CXgL+AtwT0aYJMAlYDlwNjANeNrNORXUeIiIiIiKFpWxxHiy8u/0oMNLdB4VlHwNLgXuBXvnsdi/wJdDd3R34V5iE3wE8HbbpC6wArg/bTDKzGsAA4J2iOyMRERERkcNX3HfKTwKOB8ZmF7j7XmA8cHmMfXrzc7KdLRNIifh8CfBRVJsPgFPNrG4hxC0iIiIiUmSK9U450CjcfhtV/h1wopmVcfesyAp3/yH7vZlVBtoDNwGDw7I0oG6MPrOPubowghcRERERKQrFnZRXDLfbosq3Edy1TwO25rejmR1PMEQFYB7wQhx9RtZH9nUrcCtA/fr144tcRERERKSIFPfwlewZUzxG+f4C9t0KXAz8HqgCzDaz1EPp091HuntLd29Zo0aNeGMXERERESkSxX2nfEu4rQCsjShPJ0ied8Ta0d0zgGkAZrYY+IJg9pb3I/qMlB51TBERERGREumQ7pSH47gPxbJw2zCqvCGwNOpBzexjdTCzM6OKFwN7gWPdfTuwJkafAN8cYqwiIiIiIsUirqTczH5tZi+Z2bdmlglsDRf++cbMnjOzi+M83jLgB6BDRN/JQFtgSox9+gJPRpVdBCQD/w0/TwHamVmZiDYdgMXuvhYRERERkRKswOErZnYJ8GfgFGAGwTSD3wM7CcZ1Hwu0Av4nHFLS390nx+rP3d3MhgLPmlkGMBO4E6hOOOe4mZ0I1HD3OeFuQ4CxZvYi8DbBbCqPAp8AE8I2TwKfAWPM7CWCKRI7A9fGeyFERERERBIlZlJuZi8DvyJIlt9x9w0FtK0GdAGeM7NP3b1rrLbu/ryZlQfuJlgYaCHQxt2zpzB8JOzLwvbjzOyqsPxGghVAXwMezh7u4u6LzKwd8DjBGPOVQDd3H3OgCyAiIiIikmgF3SlfANwaPW94ftx9I/AXM3sG6BlH+6eAp2LUdQW6RpWNJWLBoRj7TQZi3qUXERERESmpYo4pd/dn40nIAcysarjPXncfXljBiYiIiIiUBjGTcjN7w8yipxnMr11bfn7gUkREREREDlJBs6/8GvjCzM7Nr9LM0sKHKscRYxVOERERERE5sIKS8lOBJcAnZvaomeW0NbPzCe6Odwf+CpxelEGKiIiIiBzNChpTvs7drwD6hK+ZZtbMzJ4iWFlzP3Chu9/n7ruLJ1wRERERkaPPARcPcvengTMIlrH/ArgHeAZo7u4zijQ6EREREZFS4IBJuZmVJViE5yRgA8H84ScClYo2NBERERGR0qHApNzMmhOslDkAGA00BH4D/BJYbGbXFXWAIiIiIiJHu4KmRHwI+A9QHbjC3Xu4+w53nwQ0Bz4F/mFm/zSzKsUTroiIiIjI0aegO+WPAWOAU8LVMnO4+wZ3vwq4HbgSWFx0IYqIiIiIHN0KSsqvdvcb3X1LrAbu/iLBUJbVhR6ZiIiIiEgpUdCUiB/E04G7LwVaFVZAIiIiIiKlzQFnXwEws+/M7LTwfVL4uVl2vbvvK6oARURERESOdnEl5UADICV8b1GfRURERETkMMSblIuIiIiISBFRUi4iIiIikmBKykVEREREEkxJuYiIiIhIgikpFxERERFJsHiT8unA1vC9h5+3FUlEIiIiIiKlTNl4Grn7RRHv9wMXFdBcREREREQOQoFJuZnVBm4Cjge+A95w9zXFEZiIiIiISGkRMyk3s9OBqUCliOI/mNm17j6pyCMTERERESklChpT/hiwHvgVkAq0AL4Gnin6sERERERESo+CkvJzgH7uPsvdd7v7F8CdQEMzq1M84YmIiIiIHP0KSsorAz9GlX0JGFCjqAISERERESltCkrKk4D9UWV7wm1cs7aIiIiIiMiBafEgEREREZEEO9Ad7wvNrF7E5ySCxYMuMrMGkQ3d/b1Cjk1EREREpFQ4UFI+NEb5n6M+O1Am3oOa2S1AH6AesBC4z91nF9C+NTAEOB3YCfwLeMDd10a0WQw0i9p1o7tXjzcuEREREZFEKCgpP6EoDmhmNwEjgEeBz4C7gMlmdpq7L8+nfRNgCvAxcD1QhWC6xslmdqa77zWzckAjoC8wPWL3vUVxDiIiIiIihSlmUu7u3xf2wczMCJLxke4+KCz7GFgK3Av0yme3O4E1QEd33xvuswz4D3ApMAFoCiQDH7r7ksKOW0RERESkKMV80NPMpoSresbNzM40s2kFNDkJOB4Ym10QJtrjgctj7PMl8FR2Qh5aGm6z7+Y3B3YDyw4mXhERERGRkqCg2Vf+AnxgZpPNrKuZVc6vkZnVDev/DXwIPF1An43C7bdR5d8BJ5pZnnHp7v68uz8XVdwu3GbfFW8ObATeMrOtZrbFzP5mZhUKiEVEREREpEQoaPjKeDM7hWBYyVDgb2b2PfADwcOWlQge1KwHbAaGA+3cfUsBx6sYbrdFlW8j+AUhDdhaUMBmdhzwJDAPmBoWNwdqA4uAYUALgmEyJwC/Lqg/EREREZFEK3D2FXffBjxqZkOBS4ALgQYECfn3wKcED2FOixpeEotldx2jPHqxotyNgoR8CkECf527Z/fzIJDi7nPCzzPMbB3wTzM7z91nRPVzK3ArQP369eMIW0RERESk6MS1Mqe7ZxI8UDnhMI+XfRe9ArA2ojydICHfEWvH8K79RIIHOi919/+LiG9BPrtMCrenAbmScncfCYwEaNmyZfQvCCIiIiIixaq4V/TMfhCzYVR5Q2BpxJ3vXMzsbODfQBZwnrt/EVFXNhzTHv1Qavlwu+HwwxYRERERKTqJSMp/ADpkF5hZMtCWYFhKHuHKoRMJ7qy3dvdcM6y4+z5gEDAwateOBPOUx1yUSERERESkJIhr+EphcXcPx6c/a2YZwEyCecirE87aYmYnAjUixocPI3hA9A6gvplFDgL/3t3XEKz2+aKZDQPGAWcCA4DhRTHfuoiIiIhIYSrWpByCKQ7NrDxwN8HMLguBNu7+XdjkEaALwVpDycBvgDLAG/l09wDwpLuPNLNM4D6CBzh/Ilj1c2hRnouIiIiISGGIKyk3s5uA8e6+MZ+62kBnd38y3oO6+1PAUzHqugJdw/d7CR7sjKfP0cDoeGMQERERESkp4h1TPoq8D2dmOwsYXDjhiIiIiIiUPjHvlJvZFIKx2RDMIz7NzPKbRzwVmF8EsYmIiIiIlAoFDV+5C7iGICEfALwJrIpqk0Wwmuc/iyI4EREREZHSIGZS7u5fEUw1iJk58JK7ry6uwERERERESouChq+cAXzt7rsIphmsHT7UmS93/7wI4hMREREROeoVNHxlHnAO8J/wfazl6C2sK1O4oYmIiIiIlA4FJeUXAV9FvBcRERERkSJQ0Jjy6fm9N7OyBCtwbgiXuBcRERERkcMQ7zzlmNk5ZvYvYDvBLCzNzex1M9Mc5SIiIiIihyGupNzMLgay75Y/RDCOHGAx0NfM7iuC2ERERERESoV475Q/Drzl7pcAwwiTcncfCgwBbi2a8EREREREjn7xJuWnAK+H76NnYZkGHF9oEYmIiIiIlDLxJuXrgKYx6pqE9SIiIiIicggKmhIx0t+Bx8xsCzAxe18zuwQYCLxSBLGJiIiIiJQK8Sblg4DjgJf5efjKLIKx5e8BAwo/NBERERGR0iGupNzds4BuZjYUuBCoBmwBPnX3RUUXnoiIiIjI0S+upNzMjnX3H919KbA0qq4s0Mfd/1gUAYqIiIiIHO3ifdDzUzM7IbrQzM4HvgAeK9SoRERERERKkXiT8lUEiXkTADOrZmajCKZDzAQuKKL4RERERESOevEm5ZcC84HpZtafYAhLB+Ae4Ax3/7RIohMRERERKQXiSsrdfTdBEj4OGEwwZKWRuz/j7vuLLjwRERERkaNfzAc9zezqfIrHAy2As4CrzWx9doW7v1fo0YmIiIiIlAIFzb7yzgH2fSHivQNlDj8cEREREZHSp6CkPM9sKyIiIiIiUvhiJuXu/n1xBiIiIiIiUlrFu3hQGaAHcBFQmbwPiLq7/7pwQxMRERERKR3iSsqBPxNMf/hfYAWgGVdERERERApJvEn5jcBgdx9QlMGIiIiIiJRG8S4elAJMLcpARERERERKq3iT8o+A3xbWQc3sFjNbZma7zGy2mbU6QPvWZjbNzDab2Woze9XMakW1Oc/M5prZzrDv7oUVr4iIiIhIUSpo8aD7Ij4uB/qY2UnAbGBnVHN396fjOaCZ3QSMAB4FPgPuAiab2Wnuvjyf9k2AKcDHwPVAFeCxcJ8z3X1v2GYSwYqjfwAuA142s63ufqD51kVEREREEqqgMeVP5lN2RfiK5sABk3IzM4JkfKS7DwrLPgaWAvcCvfLZ7U5gDdDR3feG+ywD/gNcCkwA+hI8gHq9uzswycxqAAM48CJIIiIiIiIJVdA85fEObTkYJwHHA2MjjrPXzMYDl8fY50vgq+yEPLQ03GYvcHQJ8HqYkGf7AOhsZnXdfXVhBC8iIiIiUhTiTrzDcd19Iz63MLPXzez0gzheo3D7bVT5d8CJ4Xzoubj78+7+XFRxu3C7xMzSgLox+ow8poiIiIhIiRRXUm5mVwHTCcZqZ3PgF8AsM7swzuNVDLfbosq3hbGkxRHLcQRDa+YRzAhTUJ+RxxQRERERKZHivVM+EPibu1+cXeDui9z9bODvwNA4+7Hs3WOUF7goUZiQTyGI+7pwuMpB92lmt5rZPDObt379+jhDFxEREREpGvEm5Y2At2PUvQ2cEmc/W8JthajydILkeUesHc3sFGAWwZ3vS939/8KqrQX0GXnMHO4+0t1bunvLGjVqxBm6iIiIiEjRiDcpXwOcE6Pul8CGOPtZFm4bRpU3BJZGPaiZw8zOBv4NZAHnufsX2XXuvj2ML78+Ab6JMzYRERYsWMBZZ51FWloaLVq0YM6cOQW2f/rpp+nUqVOuslmzZtGyZUsqVqxI48aNeeONN3LqFi1axPnnn0/FihWpV68ejz32GNn/6duxYwc9e/akZs2a1K5dmwcffJB9+/blOeaUKVNISkpi+/bthXDGIiJSEsSblL8CDDCz/mbW3Mxqm9mpZtaPYGjLy3H2swz4AeiQXWBmyUBbgmEpeZhZA2AisBZo7e7L8mk2BWgX9aBoB2Cxu6+NMzYRKeV2795Nu3bt6NatG5s3b6ZXr15cffXVZGZm5mm7Y8cO+vTpQ+/evXOVZ2Vl0aFDB/r27cvWrVv529/+RpcuXVixYgX79++nffv2dOzYkc2bNzNr1ixeeOEFxo0bB8ADDzzAZ599xueff86SJUv44osv6N+/f67+MzIy6N69OzHuYYiIyBEq3qR8KPASMAhYAPwILAw/vwwMjqeT8E74UKCHmQ0xs98AHwLVCec5N7MTzSzyrvwwgiErjwL1zeyciFedsM2TQGNgjJldYWZPAZ3DfURE4jJt2jSSkpLo2bMnycnJdO/enWrVquUkzZF++9vfsmzZMm677bZc5Zs3b2b9+vXs27cPdycpKYly5cpRpkwZkpKS+Oqrr+jVqxdZWVmsXr2arKwsqlatCsC7777L4MGDqVevHpUrV2bQoEGMGjUqVwJ+++23c9111xXthRARkWIXV1Lu7vvdvRdQE7gSuBFoDxzr7r1iDTuJ0dfzwANhH+8AlYE27p49heEjBKuGZt9F/w1QBngjLI983RD2uYhgmsSGwPvh+27uPibeuERElixZQtOmTXOVNW7cmC+//DJP29GjR/P+++9Tq1atXOXVqlXj9ttv5/rrryc5OZnzzjuPZ599luOOOw6AtLQ0zIxGjRrRqlUrLr30Ulq3bg0Ed9lTU1Nz+kpKSmLDhg1kZGQA8I9//IOMjAx69uxZqOctIiKJd1ALBLl7hrtPdPc33H28ux/S1CXu/pS713f3VHdv7e6zI+q6uruF7/e6e7K7W4zXkxH7TXb3Fu5+jLs3cvfRhxKbiJReO3bsyJUUA6SmprJz5848bevWrZtvH/v37yc1NZUxY8awc+dOxo0bxz333MOiRYtytfv666/59ttvmT9/Po8+GvxRr3379gwaNIi1a9eSkZHBkCFDgGBYzQ8//MAjjzzCK6+8UhinKiIiJUzMpNzMtprZL8P328LPsV55ZjgRETnSpKamsmvXrlxlO3fuJD09PcYeeb333nvMnTuXTp06Ua5cOdq2bUvbtm159dVXc7U75phjOPHEE+nTpw/vvfceAH/96185/vjjad68Oa1bt+baa68FoFKlSnTp0oUhQ4bE/GVARESObAXdKX+KYFaT7PcFvf5ShDGKiBSLJk2asHTp0lxlS5cuzTOkpSArV65kz549ucqSk5NJTk5m/fr1NGzYkE2bNuXUZWZmUrlyZQDWrFnDk08+ydq1a/n666+pUqUKjRo1YuPGjcyePZuePXtSuXJlmjdvDkC9evX49NNPD/FsRUSkJCkbq8LdB0W8H1gs0YiIJNDFF1/Mnj17eOaZZ+jRowevvfYaa9eupU2bNnH3cemll9KvXz9GjRpF165d+fe//83777/P1KlTqVGjBjVr1uShhx5i2LBhfPfddzzxxBMMGDAAgCeeeILMzExefvllVq9eTd++fenRowf169fPdQd/xYoVnHDCCaxateqg7uKLiEjJFTMpN7OrD6Ifd/f3CyEeEZGESUlJYeLEifTo0YP+/ftz0kknMXbsWNLS0ujRowcAI0aMKLCPU089lXfeeYdHHnmEu+++m/r16/P3v/+dli1bAjBmzBhuv/12atWqRdWqVbn33nvp0qULAI8//jg333wzNWvWJC0tjZ49e3LPPfcU6TmLiEjJYLEmTjGzApe8j+LuXubAzUqeli1b+rx58xJy7AZ9xyfkuEerFUPbFnqf+o4KV1F8RyIiIkcKM5vv7i3zq4t5pxw4oYjiERERERGRCAWNKf++OAMRETkU+mtG4dJfM0REEqOgO+U5zCwJuIVgIZ808s7a4u7+60KOTURERESkVIgrKSeY9vBuYAGwCjiY8eYiIiIiIlKAeJPyzsCgyGkSRURERESkcBS0eFCkFODfRRmIiIiIiEhpFW9SPh7oUIRxiIiIiIiUWvEOX5kEPG1mDYG5wM6oenf3pws1MhERERGRUiLepHxUuG0bvqI5oKRcREREROQQxJWUu3u8w1xEREREROQgKdkWEREREUmwmHfKzWwrcJG7zzezbQRDVGJy94qFHZyIiIiISGlQ0PCVp4A1Ee8LTMpFREREROTQxEzKIxcKcveBxRKNiIiIiEgpFPeYcjOrZGYPm9k0M/vazJqZ2YNm1qYoAxQREREROdrFlZSbWQPgv8B9wFagEcEqn82Bj8zsiqIKUERERETkaBfvPOXDCMaX/xrYDWQCuPsNZpYMDAAmFkmEIiIiIiJHuXiHr1wM/NHdt5P3gc8XgVMKNSoRERERkVIk3qQ8Eygfo64qsKdwwhERERERKX3iTcrHA4PN7BcRZW5mVYF+wORCj0xEREREpJSINynvTXA3/Evgi7DsZeD/gErAA4UfmoiIiIhI6RDXg57uvt7Mfgl0AS4EfgS2AH8HXnH3bUUWoYiIiIjIUS7e2Vdw990ED3W+WHThiIiIiIiUPnEn5WZ2CsFd8srkHfbi7v5Y4YUlIiIiIlJ6xJWUm9nNBHfIk4BtwP6oJg4oKRcREREROQTxPujZHxgHVHP3Su5eJepV9WAOama3mNkyM9tlZrPNrFWc+1Uws+/NrFM+dYvNzKNeGw4mLhERERGRRIh3+Epd4BZ3zzjcA5rZTcAI4FHgM+AuYLKZnebuywvYrwLwIVA/n7pyQCOgLzA9omrv4cYrIiIiIlLU4k3K5wFNgamHczAzM4JkfKS7DwrLPgaWAvcCvWLsdwFBIl8rRtdNgWTgQ3dfcjgxioiIiIgUt5hJuZmdEfFxNPAXMysPzAZ2Rrd398/jON5JwPHA2Ij99prZeODyAvb7APiYYErGufnUNwd2A8viiEFEREREpEQp6E75PIIHOLMZ8HhUWXa5A2XiOF6jcPttVPl3wIlmVsbds/LZ7zx3X2xmDWL02xzYCLxlZpeF8YwB7tUc6iIiIiJS0hWUlF9UBMerGG6jE+VtBA+dpgFbo3dy98UH6Lc5UBtYBAwDWhAMkzkB+HV0YzO7FbgVoH79PEPURURERESKVcyk3N0jH5jEzCoBLd19Svj5eOBS4K2DuBtt2d3HKI+eajFeDwIp7j4n/DzDzNYB/zSz89x9RmRjdx8JjARo2bJldCwiIiIiIsUqrikRw4WDviZMZEMnAM8AnxcwrCTalnBbIao8nSAh3xFnP7m4+4KIhDzbpHB72qH0KSIiIiJSXOKdp/wpgnHg52QXuPsnBFMlrgaejrOf7AcxG0aVNwSWuvtB37U2s7Jm1tXMTo+qKh9uNVe5iIiIiJRo8SblZwOPufv6yMJw3vKhwAVx9rMM+AHokF1gZslAW2BKnH3k4u77gEHAwKiqjgTzlM8+lH5FRERERIpLvPOU7ya4K56fasQ5Ftzd3cyGAs+aWQYwE7gTqE54t93MTgRq5DMcpSBDgBfNbBjByqNnAgOA4e7+/UH0IyIiIiJS7OJNyj8ChpjZMneflV1oZq0IEuKxMfeM4u7Ph/Od302wYNBCoI27fxc2eYRgPnLLv4d8+xxpZpnAfQSzqvwEPEZwF19EREREpESLNyl/ADiDYFaTLcA6oAZQmSCpvv9gDuruTxGMU8+vrivQNUbdCmIk6+4+mmCRIxERERGRI0pcSbm7Z5jZmcCVQCugKsFMKrOAceG4bhEREREROQTx3iknXGnzw/CFmZUFKikhFxERERE5PPHOU55iZkPMrHP4uTXBEJZ1ZvaJmVUvyiBFRERERI5m8U6J+CeChzKTw8+vAquAbgTL2z9Z+KGJiIiIiJQO8Q5fuQa4191HhWPLGwLXufvbZrYTeKHIIhQREREROcrFe6e8OvBV+P5KgkV5JoafNwHHFHJcIiIiIiKlRrxJ+f8B54arb14LfOru28K664BviiI4EREREZHSIN7hK38GXgb6AhUI5yU3s9kEq2deXyTRiYiIiIiUAvHOU/53M1sK/AqY7e4zw6pJwIPu/u+iClBERERE5GgXV1JuZm8AL7p7rllW3H1QkUQlIiIiIlKKxDumvO1BtBURERERkYMQb6L9EXCHmVUpymBEREREREqjeB/0TCW4W/5bM1tPsJpnJHf30wo1MhERERGRUiLepHwz8I8ijENEREREpNSKd/aVbkUdiIiIiIhIaRXvnXLMLAloClQmn7HomhZRREREROTQxDslYivgXaAWYPk0caBMIcYlIiIiIlJqxHunfDjBuPI7gBXA/iKKR0RERESk1Ik3KT8F6OTu44syGBERERGR0ijeecq/J5gWUUREREREClm8SfkAYIiZnVmUwYiIiIiIlEYxh6+Y2TaCBzizpQFzzCwL2B3V3N29UhHEJyIiIiJy1CtoTPlT5E7KRURERESkCMRMyt19YDHGISIiIiJSah3M4kHVgLOBFH6eq9wIHgBt5e63F354IiIiIiJHv3gXD/ot8A/gGH4e0mIR778p/NBEREREREqHg5l95XPgDOAVggS9GfAAkAncWyTRiYiIiIiUAvEOXzkZuNbdF5rZVKCfu38NfG1mVYCHgUlFFaSIiIiIyNEs3jvle4Ft4ftvgMZmlhx+ngI0KezARERERERKi3iT8s+Bq8P3XxOMJz8v/Fz/YA9qZreY2TIz22Vms82sVZz7VTCz782sUz5155nZXDPbGfbd/WDjEhERERFJhHiT8j8Bt5vZP919J/A28IaZjQb+Cvwr3gOa2U3ACOB1oCOwGZhsZiccYL8KwIfk80uAmTUhGD6znOCXh3HAy/kl7yIiIiIiJU1cY8rdfbKZtQaahkW3As8C5xAkwL3j6cfMDHgUGOnug8Kyj4GlBA+L9oqx3wUEiXytGF33BVYA17u7A5PMrAbBA6rvxBObiIiIiEiixEzKzWw2wR3wqcBMd/8P8B+A8G75oQwPOQk4HhibXeDue81sPHB5Aft9AHwMdAHm5lN/CfB6mJBH7tPZzOq6++pDiFVEREREpFgUNHwlA7iD4EHOzWb2sZn1NbMzwzveh6JRuP02qvw74EQzKxNjv/Pc/VpgXXSFmaUBdWP0GXlMEREREZESKWZS7u6/AaoBzQmGp/wE3EZwp3qTmb1vZneG47njVTHcbosq3xbGkhYjlsWH2GdkfQ4zu9XM5pnZvPXr1xccsYiIiIhIESvwQU8PLHb3F9z9Rnc/AahHkJz/ANwILDSzH+M8XvYddo9Rvj/Ofg6rT3cf6e4t3b1ljRo1DuGQIiIiIiKFJ97ZVwAws7JAQ4Kx4ScCdYAyBHfR47El3FaIKk8nSJ53HEw8oa0F9Bl5TBERERGREumAs6+YWVPg0vB1AcEQk+UED4GOBqa4+6Y4j7cs3DYk9xjwhsDSqAc14+Lu281sTdhHpOzP3xxsnyIiIiIixamg2VdGE8xqUgfYCEwD7gM+dvcVh3i8ZQTDXjoA/xseJxloC4w/xD4heBi1nZk94u5ZYVkHYLG7rz2MfkVEREREilxBd8pvIkjG/wA86+6bD/dg7u5mNhR41swygJnAnUB14GkAMzsRqOHucw6i6yeBz4AxZvYSwS8TnYFrDzdmEREREZGiVtCY8n7AgnC7zsxmmdmj4XL2cS06lB93fx54gOAh0XeAykAbd8+ewvARYPZB9rkIaEcwZOX98H03dx9zqHGKiIiIiBSXmMm1uz8OPG5mKcB5wK+B3wD9gV1m9m+CBX3+dYApC/Pr+yngqRh1XYGuMepW8POsKtF1k4HJBxOHiIiIiEhJcMDZV9x9j7v/y937uXtLoCbBap7fA90IpkTUipkiIiIiIofoYKdENOA4gkWFjiGYG9yBrIL2ExERERGR2AocG25m1YBzgFbh60yCKRF/AqYDzwHT3D16iXsREREREYlTQVMifkOwQJAB64BPgD4ESfjSYolORERERKQUKOhO+SLgr8An7v5V8YQjIiIiIlL6FDT7yjXFGYiIiIiISGl1UA96ioiIiIhI4VNSLiIiIiKSYErKRUREREQSTEm5iIiIiEiCKSkXEREREUkwJeUiIiIiIgmmpFxEREREJMGUlIuIiIiIJJiSchERKVEWLFjAWWedRVpaGi1atGDOnDn5tnvzzTdp2LAh6enpXHnllaxduzanbtWqVVx55ZVUrFiRevXqMXz48Dz7b9y4kYYNG7J48eKcsoyMDK677jqqVq1K1apVufHGG9m6dWuefZ9++mk6deqUq+ztt9+mSZMmpKen06xZMz744INc8XTo0IFq1apRu3Zt7rrrLvbs2XOwl0ZEjmJKykVEpMTYvXs37dq1o1u3bmzevJlevXpx9dVXk5mZmavdF198QY8ePXjzzTdZv349tWvX5vbbbwfA3enQoQNNmjRh48aNTJ48mYEDBzJr1qyc/T/99FN+9atfsXz58lz93nXXXZgZP/zwAytXrmT9+vUMHDgwp37Hjh306dOH3r1759rvm2++oVu3brz88sts376dYcOG8bvf/Y4NGzYA0LlzZ+rVq8ePP/7IwoUL+eyzz3jssccK89KJyBFOSbmIiJQY06ZNIykpiZ49e5KcnEz37t2pVq0a48aNy9XuH//4B1dddRVnn3025cuX5/HHH+fDDz9k3bp1zJ07l9WrVzN06FCSk5Np1qwZs2fPpnHjxkCQkHfq1In+/fvnOf6oUaMYPXo0qamp/PTTT2zfvp3q1avn1P/2t79l2bJl3Hbbbbn2a9SoEWvXrqV169Zs376dNWvWUKFCBcqVK0dmZiZpaWk8/PDDHHPMMdSuXZsbbrgh1y8JIiJKykVEpMRYsmQJTZs2zVXWuHFjvvzyywLbVatWjcqVK7NkyRI+//xzmjVrRp8+fahduzaNGjVizpw5VKtWDYBmzZqxfPlybrzxxjzHT05OJiUlhW7dutGoUSO2bNlCjx49cupHjx7N+++/T61atfLsm56ezvLly6lUqRJdunRhyJAhVKxYkXLlyjF+/Hhq166d03bcuHGcdtpph3aRROSopKRcRERKjB07dpCampqrLDU1lZ07d8bdbtOmTUybNo3q1auzcuVKRo8ezV133cWMGTMAqFKlCuXLly8wjhEjRpCRkcHJJ5/M1VdfnVNet27dAvc77rjj2L17N//617/o3bs3U6dOzVXv7vTq1YslS5bQr1+/AvsSkdJFSbmIiJQYqamp7Nq1K1fZzp07SU9Pj7tdSkoKVatWpV+/fpQrV47WrVvTsWNHPvzww7jjOOaYY6hUqRJPPPEE06dPZ9OmTXHtV7ZsWZKTk7n44ovp2LFjroc9d+3axTXXXMPkyZOZPn06NWvWjDseETn6KSkXEZESo0mTJixdujRX2dKlS/MMaYlut2HDBjZt2kSTJk1o3LgxO3bsYN++fTn1WVlZuPsBj3/ZZZfx0Ucf5XzOzMykbNmypKWlFbjfhAkTuOSSS3KVZWZmUrlyZQA2bdrEBRdcwKZNm5g9ezYnnHDCAWMRkdJFSbmIiJQYF198MXv27OGZZ55h7969vPLKK6xdu5Y2bdrkanf99dfz7rvv8umnn7J792769evHFVdcQbVq1bj00kupUqUKffv2Zd++fcyaNYv333+fa6655oDHP+OMMxg8eDDr168nIyOD3r1707lzZ1JSUg6437x583jttdfYv38/EyZMYMKECfz+97/H3bn66qupXbs2kydPpmrVqod1jUTk6KSkXERESoyUlBQmTpzIm2++SdWqVXnmmWcYO3YsaWlp9OjRI+ehyxYtWvDSSy/RvXt3atasyerVqxk1ahQA5cuX55NPPmHx4sXUrFmT3//+9wwfPpxzzjnngMcfNGgQZ511FqeccgrNmjWjQYMGPPvsswfcr3bt2owbN45hw4ZRuXJlBgwYwAcffMDJJ5/M7NmzmT59Oh9//DFVqlQhPT2d9PR0zj///MO7WCJyVLF4/px3NGvZsqXPmzcvIcdu0Hd8Qo57tFoxtG2h96nvqHDpOyr5iuI7EhGRgJnNd/eW+dXpTrmIiIiISIKVTXQAIiJydNNfMwqX/pohcnTSnXIRERERkQRTUi4iIiIikmBKykVEREREEiwhSbmZ3WJmy8xsl5nNNrNWB2h/iplNMbPtZrbSzB40M4tqs9jMPOq1oWjPRERERETk8BX7g55mdhMwAngU+Ay4C5hsZqe5+/J82tcE/gUsBq4FzgCGAFnAk2GbckAjoC8wPWL3vUV3JiIiIiIihaNYk/Lw7vajwEh3HxSWfQwsBe4FeuWz2x0EcbZ3953ABDNLAfqZ2TB33ws0BZKBD919STGcioiIiIhIoSnu4SsnAccDY7MLwqR6PHB5jH0uAaaECXm2D4CqwJnh5+bAbmBZIccrIiIiIlLkijspbxRuv40q/w440czKxNgnv/aR/TUHNgJvmdlWM9tiZn8zswqFEbSIiIiISFEq7qS8YrjdFlW+LYwlLcY++bWP7K85UBtYBLQFHgY6EtxRFxEREREp0Yr7Qc/sGVM8Rvn+GPtEt8+W3f5BIMXd54SfZ5jZOuCfZnaeu8/I1aHZrcCtAPXr1z+I8EVERERECl9x3ynfEm6jh5WkEyTYO2LsE92+QkQd7r4gIiHPNincnhbdobuPdPeW7t6yRo0a8cYuIiIiIlIkijspz34Qs2FUeUNgqbvnd0d8WYz2AEvNrKyZdTWz06PalA+3mqtcREREREq0RCTlPwAdsgvMLJlgHPiUGPtMAS4xs8jx5h0IHuxc6O77gEHAwKj9OhLMUz67EOIWERERESkyxTqm3N3dzIYCz5pZBjATuBOoDjwNYGYnAjUihqM8T7DA0AQz+zPBcJR+QF93zwzbDAFeNLNhwDiCqRIHAMPd/fviOTsRERERkUNT7Ct6uvvzZlYeuJtgwaCFQBt3z57m8BGgC+HDn+6+xswuAYYB7wBrgYfc/cmIPkeaWSZwH8EDnD8BjwFDi+WkREREREQOQ7En5QDu/hTwVIy6rkDXqLJ5wLkH6HM0MLow4hMRERERKU7FPaZcRERERESiKCkXEREREUkwJeUiIiIiIgmmpFxEREREJMGUlIuIiIiIJJiSchERERGRBFNSLiIiIiKSYErKRUREREQSTEm5iIiIiEiCKSkXEREREUkwJeUiIiJyUBYsWMBZZ51FWloaLVq0YM6cOfm2e/PNN2nYsCHp6elceeWVrF27Nk+b//znP9StWzdX2WeffUaZMmVIT0/Pef3xj38EICMjg+uuu46qVatStWpVbrzxRrZu3Zqz70svvcQvfvELKlasyJlnnsmMGTNy6mbNmkXLli2pWLEijRs35o033sipW7RoEeeffz4VK1akXr16PPbYY7j7YV0nkYOhpFxERETitnv3btq1a0e3bt3YvHkzvXr14uqrryYzMzNXuy+++IIePXrw5ptvsn79emrXrs3tt9+eU+/uvPLKK1x22WV59l24cCFXXHEF27dvz3n1798fgLvuugsz44cffmDlypWsX7+egQMHAjBt2jT69+/PmDFj2Lx5M3feeSft2rVj48aNZGVl0aFDB/r27cvWrVv529/+RpcuXVixYgX79++nffv2dOzYkc2bNzNr1ixeeOEFxo0bV7QXUySCknIRERGJ27Rp00hKSqJnz54kJyfTvXt3qlWrlieB/cc//sFVV13F2WefTfny5Xn88cf58MMPWbduHQB//OMfGTZsGA899FCeYyxYsIAWLVrke/xRo0YxevRoUlNT+emnn9i+fTvVq1cHYNWqVTzwwAO0aNGCpKQkunTpQpkyZfjyyy/ZvHkz69evZ9++fbg7SUlJlCtXjjJlypCUlMRXX31Fr169yMrKYvXq1WRlZVG1atXCvXgiBVBSLiIiInFbsmQJTZs2zVXWuHFjvvzyywLbVatWjcqVK7NkyRIAunfvzsKFCznzzDPzHGPBggXMnDmTE044gfr163P//fezZ88eAJKTk0lJSaFbt240atSILVu20KNHDwBuvPFG+vTpk9PPzJkz2bZtG02bNqVatWrcfvvtXH/99SQnJ3Peeefx7LPPctxxxwGQlpaGmdGoUSNatWrFpZdeSuvWrQvhionER0m5iIiIxG3Hjh2kpqbmKktNTWXnzp0H1a5OnTqYWb7HqFGjBu3atWPx4sV88sknTJs2jT/84Q+52owYMYKMjAxOPvlkrr766jx9fPXVV3Ts2JFHH32U6tWrs3//flJTUxkzZgw7d+5k3Lhx3HPPPSxatCjXfl9//TXffvst8+fP59FHH43voogUAiXlIiIiErfU1FR27dqVq2znzp2kp6cfUrv8jB07lvvuu4+0tDQaNmxI//79ef/993O1OeaYY6hUqRJPPPEE06dPZ9OmTTl1//u//8u5557LnXfeSd++fQF47733mDt3Lp06daJcuXK0bduWtm3b8uqrr+bp98QTT6RPnz689957B74gIoVESbmIiIjErUmTJixdujRX2dKlS/MMaYlut2HDBjZt2kSTJk0K7D8jI4MHHniAbdu25ZTt3r2bY445BoDLLruMjz76KKcuMzOTsmXLkpaWBgRjzjt16sTzzz/Pww8/nNNu5cqVOUNgsiUnJ5OcnMz69etp2LBhrsQ+MzOTypUrFxirSGFSUi4iIiJxu/jii9mzZw/PPPMMe/fu5ZVXXmHt2rW0adMmV7vrr7+ed999l08//ZTdu3fTr18/rrjiCqpVq1Zg/5UqVeK9995j4MCB7N27l2+//ZYhQ4bQrVs3AM444wwGDx7M+vXrycjIoHfv3nTu3JmUlBSmTJnC7bffzvjx47n++utz9XvppZeycOFCRo0ahbszffp03n//fTp16kSNGjWoWbMmDz30EJmZmSxZsoQnnniCm2++uXAvnkgBlJSLiIhI3FJSUpg4cSJvvvkmVatW5ZlnnmHs2LGkpaXRo0ePnIcuW7RowUsvvUT37t2pWbMmq1evZtSoUQfsPykpiXHjxrFo0SKqV6/Or371K6655hruvvtuAAYNGsRZZ53FKaecQrNmzWjQoAHPPvssAI8//jiZmZlcccUVueY4nzRpEqeeeirvvPMOw4YNo1KlStxxxx38/e9/p2XLlgCMGTOGVatWUatWLdq2bcu9995Lly5diugqiuRlpX1i/JYtW/q8efMScuwGfccn5LhHqxVD2xZ6n/qOCpe+o5JP31HJVxTfkYgUDzOb7+4t86vTnXIRERGRo0BhrLRaUB8HWvV0xIgRHH/88VSsWJFLLrmE77//Pqeubdu2lC9fPtdfMLJNmTKF008/nQoVKtCqVSvmzp2bU7d69WratWtHlSpVqFOnDv369WP//v1AsABVhQoVcvV5xRVXHP6FTBAl5SIiIiJHuMJYabWgPg606um4ceN47LHHmDBhAhs3buTkk0/mlltuyTnuwoULmTFjRq5VWgFWrFhB+/btuf3228nIyODhhx/mN7/5DT/99BMQrOB60kknsX79ej777DPeeustXn/9dQC+/fZbALZt25bT58SJE4v2QhehsokOQERERBJLQ4wKVyKGGEWutArB4kxPP/0048aNo2PHjjntIldahWAcfq1atVi3bh3z588vsI+vvvqK1NRU9u3bl2fV0+eee46HHnqIZs2aATB06FCWL18OwLp161i3bh2nnHJKnrgnTpzIqaeempPAt23blrPPPpsxY8Zw11138c0331C3bt2cu+NJSUmUL18eCO7qn3baaTHnuz/S6E65iIiIyBGuMFZaPVAfBa16+vnnn7N3717OOussatSoQZcuXahRowYQJM8VKlTgyiuvpEaNGpx77rnMnj0bgKysrDyLTCUlJbFs2TIA+vTpw0svvURqairHHXdczoO/2f1u2bKFFi1aULNmTTp16sSPP/54WNcxkZSUi4iIiBzhCmOl1Xj7yG/V002bNvHiiy/y+uuvs2LFClJTU+ncuTMQDItp1aoVw4YNY9WqVXTu3JkrrriCn376iTZt2jB37lzGjBnD3r17mTRpElOnTmX37t1AMG68f//+bN26lS+//JIZM2bw4osvAsFMQK1atWLy5MksW7aM9PT0XH8VONIoKRcRERE5whXGSqvx9pHfqqcpKSnceeedNGrUiLS0NAYPHszUqVPZtm0bV111FePHj6dZs2akpKTQs2dPjjvuOKZNm8YvfvEL3n77bQYPHkydOnV44403uOGGG6hcuTJr1qyhR48ePPjgg6SmptK0aVMefPBBRo4cCcDAgQMZOXIktWrVolKlSjz11FPMnTuXNWvWFMo1LW5KykVERESOcIWx0mpBfRxo1dPGjRuzefPmnLqsrCwguNP9zjvv8Pbbb+fqN3uV1m3btlG/fn0WLVrEhg0bePXVV/nvf//L6aefzpo1a8jMzMz1sGr2KqwQjFv//PPPc/UJ5Kz+eqRRUi4iIiJyhCuMlVYL6uNAq55269aNZ555hq+//ppdu3bxyCOP0KZNGypWrMj27dvp1asXX331FXv37uXPf/4zu3bt4rLLLmPjxo20atWKzz//nMzMTJ5//nlWrlxJ+/btadasGfXq1eP+++9nz549rFixgieffJLf/e53QDA+vnfv3mzcuJEtW7Zwzz33cNVVV1GlSpViv/6FQUm5iIiIyBGuMFZaLagPKHjV0zvvvJMHHniAK6+8klq1arFt2zZGjx4NQNeuXbn77ru5/PLLqVy5MmPHjmXixImkpaXRoEEDRowYQceOHalevTpvv/02H3/8MWlpaaSkpDBhwgSWL19OnTp1uOCCC7juuutyVncdPnw4DRo04OSTT6Z+/fokJyfHtWpsSZWQFT3N7BagD1APWAjc5+6zC2h/CjAMOBvYBDwHPOERwZvZecCTwKnAj8Cf3P2VA8WiFT2PHlqJsOTTd1Ty6Tsq+fQdlXxadVViKVEreprZTcAI4HWgI7AZmGxmJ8RoXxP4F+DAtcBIYAjQO6JNE2ASsBy4GhgHvGxmnYrsRERERERECkmxLh5kwezujwIj3X1QWPYxsBS4F+iVz253EMTZ3t13AhPMLAXoZ2bD3H0v0BdYAVwf3j2fZGY1gAHAO0V8WiIiIiIih6W4V/Q8CTgeGJtd4O57zWw8cHmMfS4BpoQJebYPgIeBM4FZYZvXPfdYnA+AzmZW191XF9oZiIiIiBQzDTEqXCVxiFFxD19pFG6/jSr/DjjRzMrE2Ce/9gCNzCwNqFtQm0OMVURERESkWBR3Ul4x3G6LKt8WxpIWY5/82mfXFdRn5DFFREREREqk4h6+YuE2esqX7PL9MfaJNUXM/kPp08xuBW4NP243s6XRbSSX6sCGRAdxIPZ4oiNIKH1HJZ++o5JP31HJp++o5NN3VLDjY1UUd1K+JdxWANZGlKcTJM87YuxTIaqsQkTd1qiyyD4jj5nD3UcSzOIicTCzebGm75GSQd9RyafvqOTTd1Ty6Tsq+fQdHbriHr6yLNw2jCpvCCz1/CdNXxajPeE+24E1BbT55hBjFREREREpFolIyn8AOmQXmFky0BaYEmOfKcAl4QOd2ToAGwkWHspu0y7qQdEOwGJ3j7wjLyIiIiJS4hTr8BV3dzMbCjxrZhnATOBOgvFHTwOY2YlADXefE+72PHAXwfzkfwZOA/oBfd09M2zzJPAZMMbMXiKYIrEzwWJDcvg01Kfk03dU8uk7Kvn0HZV8+o5KPn1Hh8jyHzFSxAc16w3cTZCMLwR6u/vssG400MXdLaJ9S2AY8EuCsejPu/vjUX22AR4HTgZWAn9099FFfS4iIiIiIocrIUm5iIiIiIj8rLjHlMsRxMxuMbNlZrbLzGabWatExyT5M7P2ZhY9V78kmJmVMbP7zOxrM9thZl+Z2Z1mZgfeW4qDmZUzs8Fm9n34HU01szMSHZfkZWYp4b+l0YmORXIzs2pm5vm83kl0bEcSJeWSLzO7CRgBvA50BDYDk83shETGJXmZWWuC70mJXsnzCPBHgu+nPfA28FfggQTGJLk9DfQChgK/BXYC08ws5lzCkjB/IBiiKiXPaeG2DdAq4tUvYREdgTR8RfII7+ItBya6e8+wLBlYCnzk7r0SGZ8EzCyF4NmMxwjm+C/n7ukF7yXFxcySCH6ZHebuj0SUPwdc4+41ExWbBMysErCeYOKAv4Rl5Qlm9/qjuw9OZHzyMzM7HZgB7ALGu3vXxEYkkczsHoJ/R7UTHcuRTHfKJT8nEaw4NTa7wN33AuOByxMVlORxBcFdiAeAZxIci+RVCXgVeC+qfClQI2qaV0mMHcDZwKiIsr0EK0SnJCQiycPMygKvAH8GfkxwOJK/5sAXiQ7iSKekXPLTKNx+G1X+HXBi1HzwkjifASe4+3CCJEJKEHfPcPc73X1BVFU7YJW757eCsRQjd9/n7gvcPcPMksLhea8Q/Ht6PcHhyc8eBMoBf0p0IBJTcyDVzGaZ2W4zW2VmffT8zMEp1nnK5YhRMdxGPzi4jeAXuTRga7FGJHm4u+4YHWHM7H8I1lHQELCS5xFgYPh+gLsvTWAsEjKzk4GHgF+7e6ZyvJInHKrXlOAvT/cTTEv9G4Jfoo4BHk1cdEcWJeWSn+z/6kXffc0u31+MsYgcFczsBoKHp98Bnk1wOJLX+8AnwEXAADMrF/ksgBS/MNl7GXg5ey0TKZEMuBJY6e7Zf2GfZmbpwINm9oS7705ceEcOJeWSny3htgLBYk3Z0gkScv3ZXeQgmNm9wFMEz2nc4HrCvsRx9+zxsNPNrALwgJk9Gj5PI4lxF8HzTVeG48qzmZmVdfd9CYpLIrh7FjA1n6pJQA+C59QWF2tQRyiNKZf8LAu3DaPKGwJLlVCIxM/M/gj8BXgN6OTumQkOSUJmVtvMuoVJeKQFBA96VktAWPKz3wLHApsIHsDdSzD13k3AXjNrkLjQJJuZ1TWzW82sRlRV+XC7obhjOlIpKZf8LAN+ADpkF4RTIrYFpiQoJpEjjpndTTBDzjCgq+7slTiVCR7s7BRVfhmwLnxJ4twGnBn1+gb4KHy/OnGhSYQU4EWgc1R5R+Abd/+p+EM6Mmn4iuTh7m5mQ4FnzSwDmAncCVQnWGhDRA7AzOoAjwP/Bf4JnB31kNo8JemJ5e5LzOxd4CkzK0cww9TVwI1Ad3fX8zMJlN/Dtma2C9jo7vMSEJLkw92Xm9mbwGNmth/4GriGICnvkMjYjjRKyiVf7v58uIjG3cC9wEKgjbt/l9DARI4cbQjuIJ0K5PeQWg30Z92S4CaClSL7AXWArwgWd9Ly4CLxu5lgBqN7CP4dfQ10dPexBe0kuWlFTxERERGRBNOYchERERGRBFNSLiIiIiKSYErKRUREREQSTEm5iIiIiEiCKSkXEREREUkwJeUiInLUsKjJ4EVEjhRKykWk0JnZQjNzMzszQccfaGbbD9BmtJktPsh+LwzPq+XhRRjXsQ4lvhVm9mxxHKswmdknZvZRIfTzK+CdiM9dw++r+uH2fYDjJvT6icjRQUm5iBQqMzsVaE6wCMv/JDgcKV3+B2ic6CBERA6FknIRKWxdgEXA34DrzSwtwfGIiIiUeErKRaTQmFkZ4PfAJOAtIA24NqK+q5ltMLNfh0Nc9pjZV2bWPqLNinDIQfRrRUSbNmY23cy2mdnusK+r84nnd2a2NGwzz8xaH+T5/MbMFpjZLjObBZyQT5tfmtkUM9tpZuvN7BkzS42o/8TMRprZZDPbamZPHkwMEf0km9kgM/smvG4ZZvaemR0X1bS8mT1vZpvMbIuZ/d3MKkT042bW38y+NLONZtYpoq6XmX0fnu8nZnZy1HnkGmJiZveYmUd8XmFmfczshfD4W/M5frqZvRTWbzCzB/M517Jm9qiZrYz47n4dUZ89jOg2M1tjZj+Y2WiCXwibhXUXRnR5cfgzsjs87/ZRx2tuZhPDmDaZ2WtmViuqzYVm9m8z225mq8zsKTM7JqpNvtfPzP4a+fMbli00s++jyhab2RPh+8ZmNib8mcoMr+0jZj+PmTezLuH57A5jejoypjjq08Kf17URMZ8eUZ/97/WBcLs08mdbRAqZu+ull156FcoLuBxw4JTw8/8CMyPquwJ7gO+BW4BLgX8Du4CqYZvTgXMiXj3CPgeG9WcBWcBzwMXAVcAsYDdQI2wzENgPfAtcB7QDvgZ+AsqGbUYDiws4l3OAfcA/w/N6NDyGAy3DNk2BHcC/gCuB7sA64KOIfj4B9gIvAJcBZ8Z5LXPFBzwLbAqPcQFwO7AFeDeizYrw2vwTuAS4NzyHpyLaOJAJ9ASuAWqFx8oC5ofX83fAamB+1Hl8FBXjPcH/RnIdf3N4/MuAXuGxHo9o8xGwITyPq4CFYZvIazYqvK69w2v/etimdVh/YXgeq8Lv9kbgRGA88H/hd1eR4OfNw++9O9AGmEnw81Yz7KsFsBOYEtHX98ASIC3iZ24vMA5oC9wcXvsREd9VzOvHz/8uGoafq4TtHagfltUNP18EpANrgKnAbwj+nbwS1rcL27cK+3iI4OehZ3hef4qz3sJzXk/wb/FKgl+mtwAnRvx73UcwFK0N0CnR/43RS6+j+ZXwAPTSS6+j5wW8AXwe8blzmEg0CT9nJ0nXRrRpHpZ1zKe/asDyMFlICsu6AWOi2p0e9nFl+Hlg+PmciDZXh2XNw8+jKTgpfy9MRiyibDi5k/I3ge+AlIg254Vtzg8/f0KQTCcf5LXMFR/BXx66R7UZBmyI+Lwin5jHRn0nTt7kenSYwNWNKLsvbFsx4jziScoXRx3/PeC/Ud/17yLq6xD8svNR+PnksM3/RB1rCjA1fH9h2Ob+A1yz7J+36yLKzgjL2oef3yVIwstFtGkaXo+7ws/vA98AZSLa3Al8BpQ50PUDjiFI/G8O6zqEx9wA3BAR6xYgGfglMIPwl8ywPgnIAJ4MPz8AbCX3z97NwE1x1rcJ47skor4ssBR4Jer6KRnXS69ieGn4iogUinCIwlXAe2ZW2cwqE9zp20neBz7nRLxfFW5zjT23YCjMWwR39G5w9/0A7j7K3a8J//Te0sx+D9wR7pYS0UUW8J+IzyvCbeU4T+lcYJK7e0TZu1FtLiL4a0BWOOSiLDCbIBn6dUS7b919b5zHzZe7/87dXzGzumZ2sZndAfyK3OcMMCcq5hXkPeev8jnE9+6+Omo/8tn3QP4TdfxV/PzdnhtuJ2ZXuvsagmuW7cJwOyH7mobXdQLwKzMrF9E2v/PIz6yI9yvCbeVwez7wobtnRsT0FfAFwR1mgNbABHfPimjzrLufGVEW8/q5+25gOsFfdrLP8d/AXILvEIK/LPzL3fe6+3x3Pw/YbGZNzawD8AeChD37+55NcEd9UTjU5yyCZPrVOOsvIvi3OT3iGkPw8xz5swvxX2cROQxKykWksFwDpAKPEdzRywB+DMtuikqmdka83x9uo/979GeCu87XuPvG7MIwGX+dYJjEbKA/wZ1ICBL4bLuzE/kDHCeWKgR3MiP9FPW5GnAbwdCGyFdFgjvA2dbFecyYzKy1mS0iuKbvAZ0IhiNEz8u9M+rzfvKec37x5Lcf+ex7IAUdvwqw1923RrWJvK7Vwu2P5L6mTxIkpZHTG8Z7XQv6easCrM1nn7UE3yNA1TiOdaDrN5EgEYYgKZ8BfAqcF44Tv4TgFw8AzKw/wdCSL4G/Ar8guA4G4O6fEvwSvAboR5Dgf2tm58ZTT3CdUwmGBUVe5zvJ/bNLHOcuIoWg7IGbiIjE5SaCO9PRD+41IxgPfVW8HZnZDQTjoXu6+2dR1c8Q3FX8DfBvd99jZk2BGw418Bg2AjWjyqpFfd4CfEgwXjxadEIfk5k1IhiW87i7bw6LyxAM68DMKhGMxf6UYJjPt2H5EwRjoouDkzdBTz/IPjYCyWZWOeI8Ibiu2Xeqt4THOpcgSYy2AWh0kMctyCaCcfXRahM8h5AdU43ISjOrSjDMZGacx5kEDDOzs4FTCe6UVwWGENyZrkH4FwQzuwkYTPDcwJvuviUsz5Ucu/s4YFz483EF8DAw3sxquntmQfXhOa0jGCMvIiWA7pSLyGEzs/oEwwBec/dPIl/ACII7oXHNWW5mZwAvhX2NyKdJK4JhJR+7+56w7PLs3Q/nPKJMA9pF/Fkfgl8EIn1KMAZ6vrvPc/d5wA/AUOCUgzhWPaAvuZPNegR3iwmPUQX4a0RCnkTwAGBxrWC5leBhxEjnHWQfn4TbnJlyzKwKwYOZ2T4lOKcK2dc0vK6RD67GklVAXSyfAldF/iXHzJoQJM7ZCfcs4Irwmmf7HcEvSmXiOYi7f0Pw/EF/gucAlhCMSd9N8BDxoojhL62AVe4+IiIhP4Mgcbfw80AzmxP2vcXd/0nw16VKQKUD1YfnXQPYHnWdbyB4FkREipnulItIYbiJ4O5m9Jhr3D3LzN4C7iL32N48wruP7xPcwXsuvKsYmXQuIEhk2ptZF2AlwTjdB8L6wpyubQgwD/jAzJ4jeEjxzqg2jxGc09tm9grBMJpHgOPCWOM1l2C4xBNmNhg4k2CIw01h/RJgG/BIONa+PME4+tMANzOLGsddFCYCL5jZQILx0Z0I7hTHzd2XhkOP/hpOzbeSYGhFckSbhWb2LvB6eKyvCa7Fw8AT7r4/YlbAaJuBemZ2KcF3F48hBN/hRDN7miBhHUwwJvzvYZs/Egw3ecfMRhJ8v0OAZ919WwHxRJtEcPf73fBc94aJ80XAnyLafQb0MLMBBNe6CcGYcufnn/FpwAAze4lgtpsqBAn/p+6+3swOVD8uPM4EMxtE8F10JPi56hHvCYlI4dGdchEpDJ0Jpj5cE6P+HwT/vel+gH6aA/WB4wkeBp1DMG48+1WHYJq8jwnG2b5H8Kf/qwlmx2h1OCcRyd2/JLgTXT08zvX8/EBpdpv5BL8U1CBItF4muLt9obv/SJzcfQfB8J4UguEwPQnunL8e1m8hSJiqEMym8hzBMI5rCK7r2Yd4mgfjbwTX/M4whooEs68crJvDvgYR/FzMJZhqMNINBNMi9iNIZK8nuB79D9D3iwS/3HxEMMTpgCK+w2RgDMGMNjOAc919W9hmTthfHeADgl8QhocxHYzsB1z/HVE2PdxOiCgbDTxBkBxPIPiF9s8EP1/nhDFNJ7guLQm+jxcJho91jLM+i2AGlo/DY00g+GtXN3d/8SDPS0QKgRX9zRURERERESmI7pSLiIiIiCSYknIRERERkQRTUi4iIiIikmBKykVEREREEkxJuYiIiIhIgikpFxERERFJMCXlIiIiIiIJpqRcRERERCTBlJSLiIiIiCTY/wNJ9IMw8aZiJQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xs = [0, 1, 2, 3, 4, 5]\n", "res = []\n", "\n", "for x in xs:\n", " if x != 5:\n", " p = poisson.pmf(x, mu=1)\n", " else:\n", " p = 1 - poisson.cdf(4, mu=1)\n", " res.append(p)\n", "\n", "fig, ax = plt.subplots()\n", "ax.bar(xs, height=res)\n", "_ = ax.bar_label(ax.containers[0], label_type=\"edge\", size=13)\n", "\n", "ax.set_xlabel(\"Anzahl der Jahrhunderthochwasser\")\n", "ax.set_ylabel(\"Wahrscheinlichkeit (P=X)\")" ] }, { "cell_type": "markdown", "id": "725c1e0f-724e-4b4a-b1f4-5380c4b34179", "metadata": {}, "source": [ "## Form, Mittelwert und Standardabweichung einer Poisson-Verteilung\n", "----------------------------------------" ] }, { "cell_type": "markdown", "id": "b21e1e72-3c44-46f3-9f7d-0abb23a8c409", "metadata": {}, "source": [ "Alle Poisson-Verteilungen sind rechtsschief. Der Mittelwert $\\mu$ und die Standardabweichung $\\sigma$ einer Poisson-Zufallsvariablen mit dem Parameter $\\lambda$ sind" ] }, { "cell_type": "markdown", "id": "f5183e2a-faab-4bad-8cb7-7892cb6cebf1", "metadata": {}, "source": [ "$$\\mu = \\lambda$$" ] }, { "cell_type": "markdown", "id": "83bd2876-dd72-4f1d-9a9c-e34445fa3753", "metadata": {}, "source": [ "und" ] }, { "cell_type": "markdown", "id": "35795dd6-ec79-4b46-a5d6-1f48549d3d8b", "metadata": {}, "source": [ "$$\\sigma = \\sqrt{\\lambda}\\text{.}$$" ] }, { "cell_type": "markdown", "id": "4057356b-a858-426a-87f6-4f1c849dd20e", "metadata": {}, "source": [ "## Poisson-Approximation an die Binomialverteilung\n", "----------------------------------------" ] }, { "cell_type": "markdown", "id": "ab018f1c-8eeb-4fae-abf0-0579cf5198cd", "metadata": {}, "source": [ "In Situationen, in denen $n$ groß und $p$ sehr klein ist, kann die Poisson-Verteilung zur Annäherung an die Binomialverteilung verwendet werden. Erinnern Sie sich an die binomische Wahrscheinlichkeitsverteilung:" ] }, { "cell_type": "markdown", "id": "2154fa74-f655-4b26-8414-7d3793f81490", "metadata": {}, "source": [ "$$P(X = x) = {n \\choose x}p^x(1-p)^{n-x}, \\qquad x = 0, 1, 2, \\dots , n $$" ] }, { "cell_type": "markdown", "id": "0e9f9be6-5ff6-4996-bde3-9feaa2887b7e", "metadata": {}, "source": [ "Wie im früheren Beispiel \"Jahrhunderthochwasser\" ist $n$ eine große Zahl $(100)$ und $p$ eine kleine Zahl $(0,01)$. Einsetzen in die Gleichung von oben $P(x=1)$ ergibt" ] }, { "cell_type": "markdown", "id": "d0f84cb5-75b8-4514-9b80-a1eecdc6b7a2", "metadata": {}, "source": [ "\n", "$ P(X = 1) = {100 \\choose 1}\\times 0,01^1\\times (1 - 0,01)^{100 -1} $\n", "\n", "$ = 100\\times 0,01\\times 0,3697296 $\n", "\n", "$ = 0,3697296 $ " ] }, { "cell_type": "markdown", "id": "01247d5f-4f53-4cd1-872d-91d22f734960", "metadata": {}, "source": [ "Das Ergebnis kommt dem oben ermittelten Ergebnis sehr nahe `poisson.pmf(1,1)` $= 0,3678794$. Die geeignete Poisson-Verteilung ist diejenige, deren Mittelwert gleich dem der Binomialverteilung ist, d. h. $\\lambda=np$, was in unserem Beispiel $\\lambda=100×0,01=1$ ist." ] }, { "cell_type": "markdown", "id": "f3780227-5844-4854-aaeb-61b2adf44424", "metadata": {}, "source": [ "Zum Abschluss dieses Abschnitts und um Ihnen eine Vorstellung von den Formen der verschiedenen Poisson-Wahrscheinlichkeitsverteilungen zu geben, werden im Folgenden drei verschiedene Poisson-Wahrscheinlichkeitsverteilungen und die entsprechenden kumulativen Poisson-Wahrscheinlichkeitsverteilungen für $\\lambda=2,5, \\lambda=7$ und $\\lambda=12$ angegeben." ] }, { "cell_type": "code", "execution_count": 10, "id": "b783fba2-900c-4d16-91eb-01a3f8446794", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA08AAAR4CAYAAADe5u2BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xcZdn/8c93k00hCYQSCZ0kiNIS8QEVAQGp0gQRHkWlKGAD6U16k/ATRKoICqgEEBFBCRAg0ssDkSKQBAJJKAESSnrZluv3xzkDk8nM7Nnd2Z0t3/frNa+Zuc8597lmGde9ct/3dSsiMDMzMzMzs/Jqqh2AmZmZmZlZV+DkyczMzMzMLAMnT2ZmZmZmZhk4eTIzMzMzM8vAyZOZmZmZmVkGTp7MzMzMzMwycPJkZmZmZmaWgZMnMzMzMzOzDJw8mZlZlyWpRtKPJb0oaYGkNyX9UdLqGa59U1IUeWzTEbGbmVnXo4iodgxmZmatIuk04FzgN8A4YF3gHKABGBUR80tctwrwEXAa8O+Cw6+Uus7MzHo2J09mZlYRkp4H3o+IbxS0/xY4HBgUEUsreL/ewGzgLxHxs7z2rYAngSMi4roS1+4IPAhsHBGTKhWTmZl1b72rHYCZmXV9aSKzEcnoT6FRwMulEidJZf8VLyJU4tBg4Ebg1oL2ienzWmW6/SKwGHit3L3NzMzyOXkyM7NK+BzQF3ihyLGRwN/LXLtVa24YER8CRxU59K30+eUyl29OMm3vZkm7AP1Ipu8dGxFOqMzMrCgnT2ZmVgmbpc8v5jdKWgdYpbA9X0Q8XakgJH0OuBh4CbizzKmbA2sAk4ArgWHAWcATkjaPiHcqFZOZmXUfTp7MzKwSRlJ8Gtyo9Llk8pRO+SspIhqzBCDpC8C9QB2wbzPX/Qhoioj/S98/JukJkil/xwPHZrmnmZn1LE6ezMysEkaSrGtqKmj/AhDAf8tc29BM36XWPH16grQv8BdgFrBrRLxR7vyIeLJI2xuSJpHEbGZmthwnT2ZmVgkjgYeLtO8GTI+IeWWu3bItN5Z0HMlUvWeBvSJiVjPnDyZZFzUhIgqTuv7AlLbEY2Zm3ZeTJzMzaxNJKwHrAKsXtO8BbA3cVe76iJjQhnv/BLgE+CfwnYhYnOGyOuAqYCzw7by+tgA2AH7b2njMzKx78z5PZmbWJpK2BR4FFgK3Ac8DmwL7AJ8hKd5wekT8s8L3XRt4HfgAOJDlp//NiIi30/PWBibmRsAknUGyue5VJIUlNiDZXPdd4EsR0dxUQjMz64Fqqh2AmZl1eSPT5/2BrwC/Ttt2I5nKtzYwsB3uuzdJefS1SZK3pwoeP0/POyx9/8W8a88HfgxsSzJqdTZwB7CjEyczMyvFI09mZtYmkq4B9oyItasdi5mZWXvyyJOZmbXVSJIS32ZmZt2akyczM2s1SSJZ3/RKtWMxMzNrb06ezMysLdYHBuGRJzMz6wG85snMzMzMzCyDHr/PU01NTfTv37/aYZiZmZmZdQuLFi2KiOiWM9x6fPLUv39/Fi5cWO0wzMzMzMy6BUlZNizvkrplRmhmZmZmZlZpTp7MzMzMzMwycPJkZmZmZmaWgZMnMzMzMzOzDJw8mZmZmZmZZeDkyczMzMzMLAMnT2ZmZmZmZhk4eTIzMzMzs6qRtLek+RnO21TSeEkLJL0l6WRJ6ogYc3r8JrlmZmZmZlYdkr4K3ASUTYIkfQZ4EHgZOAD4InAB0ARc3M5hfsLJk5mZmZmZdShJfYGjgfOAhUCfZi75OUnusndELALuSfs4VdJlEdHQrgGnPG3PzMzMzMw62jeAU4ETgSsynL8TMD5NnHLuBFYBtqx4dCV45MksT0TQ2NhIY2MjDQ0NNDQ0NPu6sbGRpqYmImKZx9KlS5drK9aef+/CWMq9b8tnNDMzM6uyZ4FhETFH0tkZzt8QeLigbWresScrF1ppTp6sW2loaGD27NnMmTOH2bNnt+j1/PnzaWxsrPZHMDMzM+vqekuakPf+2oi4Nv+EiJjRwj5XBAqLSszPO9YhnDx1IeufMrbV104fvUcFI+kcGhsbmThxIs8++yzPPvsszzzzDC+99FLZBKh///4MHjyYlVdemZVXXpk11liDjTfemJVXXplBgwZRW1tLbW0tvXv3Xua5XFvv3r3p1asXkj551NTULPO+ufacwoIxzb1vrQ4uTGNmZmY9yMiRIxsjYosKdyug1PSZpRW+V0lOnqxLiAimTp36SZL07LPP8txzz7FoUTLtdfDgwWyxxRaccMIJrL322sskSLnXgwcPpl+/flX+JGZmZmbWCnOBQQVtg/KOdQgnT9Ypvffee5+MKOUeH3/8MQD9+vVj88035/DDD2fLLbfkS1/6EiNGjKCmxvVPzMzMzLqpKcDwgrbc+1c7KggnT9apPPfccxxzzDE89thjAPTq1YtNNtmEb33rW58kSptssgm1tbVVjtTMzMzMOtB44MeSBkTEwrRtH+Aj4IWOCsLJk3UKH3zwAaeddhp/+MMfWG211Rg9ejRbb701m2++OQMGDKh2eGZmZmbWgSSNAIZExNNp09XAUST7O/0aGEVS6vyUiKjvqLicPFlVNTQ0cPXVV3PWWWexcOFCjjnmGM4880wGDx5c7dDMzMzMrHrOAA4mKRRBRLwnaSfgMuB2YCZwWkRc3JFBqafv+TJgwIBYuHBh8yd2At2t2t6DDz7I0UcfzcSJE9lll1347W9/y0YbbVTtsMzMzMysDSQtiohuOXWoKivsJR0uaYqkxZKekrRVM+d/VdJDkuZIelfSnyWtXnDOy5Ki4PFh+34Sa42pU6ey7777svPOO7NkyRLuuusu7rvvPidOZmZmZtapdXjyJOkg4BrgJmA/YA4wTtKwEudvRLJAbD7wXeAEYOv0mtr0nD4kOwufAmyV99i1PT+LtczChQs5/fTT2XjjjXnggQf41a9+xSuvvMLee+/tfYfMzMzMrNPr0DVPSv5CPpdkl+Fz0rYHSMoLHgv8oshlRwLvAftFREN6zRTgGWBn4B5gY6AWuCsiJrf357CWiQhuvfVWTjrpJN555x2+973vcdFFF7HWWmtVOzQzMzMzs8w6umDEBsB6wD9zDRHRIGkssFuJa14BJuYSp1SulntutGoksISk/rt1Is8//zy/+MUvePzxx/niF7/IrbfeytZbb13tsMzMzMzMWqyjp+1tmD6/XtA+FRghqVfhBRFxdURcVdC8V/qcG2UaSVLj/a+S5kmaK+kPkgp3IbYOsmTJEn7605/yP//zP0yePJnrrruOZ555xomTmZmZmXVZHZ08rZg+zy9on5/G0mxVDknrABcDE4B/p80jgaHAi8AewOkk66nuLNHHEZImSJrQ2NjYwo9gWZx00klcc801/OIXv2DKlCkcdthh9Oq1XG5sZmZmZtZldPS0vVxVgML66Ln2pWUvThKn8SSJ1nfi0zrrJwN98zbRekzSLOBWSdtGxGP5/UTEtcC1kJQqb9UnsZLuuecerrjiCo455hguvfTSaodjZmZmZlYRHT3yNDd9LpxON5AkcSq54ZKkTYEnSUavdo6IN3LHIuL5vMQp5770eVSbIrYWmTlzJoceeigjR47kwgsvrHY4ZmZmZmYV09HJU66gw/CC9uHAq1Fix15JXwYeBZqAbSPiv3nHeks6RNLmBZf1T5+911MHiQgOPfRQ5s2bx80330y/fv2qHZKZmZmZWcVUI3l6G9gn15Du1bQHyXS85UhaH7gXmAl8NSKWqagXEY3AOcDZBZfuBzQAT1UkcmvWlVdeyb333svFF1/MJptsUu1wzMzMzMwqqkPXPEVESBoNXClpNvAEyT5OqwGXAkgaAQzJm4Z3GclUvZ8D60paN6/LNyPiPeAC4PeSLgP+BWwJnAlcHhFvdsBH6/FeeuklTjzxRPbYYw9+9rOfVTscMzMzM7OK6+iCEUTE1ZL6A0eTbIz7ArBrRExNTzkDOJhkT91aYHegF3Bzke5OBC6OiGsl1QPHAUcA7wPnAaPb87NYYsmSJRx44IEMHjyY66+/nmQvZDMzMzOz7qXDkyeAiLgEuKTEsUOAQ9LXDUBtxj5vBG6sRHzWMieffDIvv/wy9957L5/5zGeqHY6ZmZmZWbvo6DVP1s3ce++9XH755Rx99NHstttu1Q7HzMzMzKzdOHmyVps5cyaHHHIIm222GaNHe4akmZmZmXVvVZm2Z11fRPDDH/6QuXPnMn78eJclNzMzM7Nuz8mTtcpVV13FPffcw+WXX86mm25a7XDMzMzMzNqdp+1Zi7388succMIJ7L777hx55JHVDsfMzMzMrEM4ebIWWbJkCd/97ndZaaWVXJbczMzMzHoUT9uzFjnllFN4+eWXGTt2LKuvvnq1wzEzMzMz6zAeebLM7rvvPi677DKOOuoodt9992qHY2ZmZmbWoZw8WSazZs3ikEMOYdNNN+Wiiy6qdjhmZmZmZh3O0/asWbmy5HPmzOGBBx6gf//+1Q7JzMzMzKzDOXmyZl199dWMHTuWyy67jM0226za4ZiZmZmZVYWn7VlZr7zyCieccAK77bYbRx11VLXDMTMzMzOrGidPVtZPfvITBg0axA033OCy5GZmZmbWozl5spKmTJnC448/zoknnsjQoUOrHY6ZmZmZWcVJypwTOXmyksaMGYMkvvvd71Y7FDMzMzOzVpE0VdKoEse+BMzK2pcLRlhREcGYMWPYfvvtWXvttasdjpmZmZlZZpJ+CuRKRK8PHCrprSKnbgP0ytqvkycr6tlnn+X111/nlFNOqXYoZmZmZmYttRpwTvo6gF8UOWcpMAc4PWunnrZnRY0ZM4a+ffuy3377VTsUMzMzM7MWiYjzIqImImoAAVvl3uc9ekfEahFxVdZ+PfJky2lsbOTWW29lzz33ZPDgwdUOx8zMzMys1dIEqiKcPNlyHnzwQWbNmsX3vve9aodiZmZmZtZikv4JHB8RU9LX5UREfDNLv06ebDljxoxh8ODB7L777tUOxczMzMysNQbxaSGIFUnWPbWZkydbxsKFC/nHP/7BgQceSN++fasdjpmZmZlZi0XEDnmvt69Uv06ebBl33XUXCxcu9JQ9MzMzM+tWJG0D7AgMBS4ENgWej4j3svbh5MmWMWbMGNZZZx223XbbaodiZmZmZtZmkvoDfwX2BOaRTOm7DjgWGClp+4iYlKUvlyq3T8yaNYtx48Zx4IEHUlPjr4aZmZmZdQsXAV8GtiXZ/0lp+/eBGSSjUJn4L2T7xG233UZTUxPf//73qx2KmZmZmVmlfAc4OSKeIK9wRETMBM4DtsnakaftVcH6p4ytdghFjRkzhpEjR7LppptWOxQzMzMzs0oZAMwqcWwx0C9rRx55MgBef/11nn76aReKMDMzM7Pu5mngaEn5A0e5EagfAs9k7cgjTwbAzTffjCS++93vVjsUMzMzM7NKOgl4BJgM3E+SOP1M0ueBLYCvZ+3II09GRDBmzBi222471llnnWqHY2ZmZmZWMRHxH+BLwLPAvkATsA/wIbB1RDyVtS+PPBkTJkzgtdde48QTT6x2KGZmZmZmFRcRE4GiU6wkDY6IOVn68ciTMWbMGPr06cO3v/3taodiZmZmZlZRkk4vc+wHJNP5MmlV8iRpQGuus86nsbGRW2+9lT333JPBgwdXOxwzMzMzs0o7S9Lo/AZJn5X0IPAn4KWsHWVKniTtKOk6Sa9LqgfmSVos6TVJV0nKvMjKOpfx48czc+ZMV9kzMzMzs+5qf+AXad7ST9I5wH+BzwIHRMTOWTsqu+ZJ0k7Ar4FNgceAO4E3gUXAysBawFbAYZJeBn4ZEeNa/nmsWsaMGcPgwYPZfffdqx2KmZmZmVnFRcSdknYD7gIOJNnX6VLg/IhY1JK+SiZPkv5IstvupcDtEfFhmXNXBQ4GrpL0eEQc0pIgrDoWLlzIP/7xD77zne/Qr1/mvcHMzMzMzNpM0uEkZcTXBl4AjitX+U7SV4H/B4wCPiCZcveriGho7l4R8aikrwH3AROAs7JcV6jcyNPzwBER0ZQhmI+A30i6AvhpS4Ow9rf+KWOXa1s48REWLFjAvxYOL3ocYProPdo7NDMzMzPrYSQdBFwDnEtSQvwoYJykURExrcj5I0j2aHoc2A/4HHARMAg4ocj5L/HpRrjLHCLZ1+l1SXPTtoiIUVniLpk8RcSVWTpIg1slIj5Os7fLs15n1bVw4sP0GrQafdfZtNqhmJmZmVkPIUkkSdO1EXFO2vYA8CpwLPCLIpd9G+gF7BcRC4H7Ja0BHCnpxIgoTJT+Q/HkqU3KTdu7GfhxRMwv14GkPYBrSdY/WRfRtGgui6c9x4pb7oPkivVmZmZm1mE2ANYD/plriIgGSWOB3Upc0xdoABbntX0EDEyPLck/ub2WEZX7q3lH4L+Sti52UNIASdcB/wLmtUdw1n4WTX4cljYxYJMdqh2KmZmZmfUsG6bPrxe0TwVGSOpV5JoxQBNwoaRVJG0JHAP8IyKWFDl/GZJqJG0qaRtJXyt8ZA283JqnzUgWYT0s6ULg7IhYmt78a8CNJBnjb4FfZr2hdQ4LX3mI2iHr02fI+tUOxczMzMx6lhXT58IZbvNJBncGUDA4ExFvSDqBZMbbSWnzc8Chzd1M0lbA34HVSdY8FQqSKYHNKjnyFBGzIuIbaXAnAU9I2kTSJcBDwFJg+4g4Lku2Z51Hw5z3qXt3MgM23r7aoZiZmZlZ99Nb0oS8xxEFx3MJTOGapFz70sIOJR0G/CF97Aj8gGTrpLGS+jYTz+XAHJJ1U/8DbF7w+GKWDwXN7PMEEBGXShoH3EaymRTAFSR7OrWoLrp1DgsnPgzAgI23q24gZmZmZtYdNUbEFmWO56rcDQJm5rUPJEmcFha55hTgnoj4ca5B0gRgEvA94Poy99sU+HZEFC8v3QLNVgqQ1Bs4gGRh14ckGeEIYKXW3lTS4ZKmSFos6al0KK3c+V+V9JCkOZLelfRnSasXnLOtpP+TtCjt+4etja87iwgWvvIwfdfZlN4rDql2OGZmZmbW80xJn4cXtA8HXi1SOQ9gHeDp/IaImExSNGLjZu73JrBCK+JcTtnkSdJIkrrrZ5KscRoO7E4y3PWypO+09IZ5Nd1vIqnRPoekpvuwEudvBIwnmQP5XZI67lun19TmnXMfMA34FkkRiz9K+nZL4+vu6me+QePH73jKnpmZmZlVyxTgbWCfXEP6d/0eJH/3F/MaSQ7wCUkbAKuS5ADlnAlckBaZaJNypcpPA84g2b33GxExLj10X5pU/REYI2kf4KcRMbu5m7WypvuRwHskNd0b0mumAM8AOwP3kAzjTQe+m2aq90kaQvKDur25uHqSha88BL16s8Lnt6l2KGZmZmbWA0VESBoNXClpNvAEyd/8qwGXwieb4g6JiNxo07nAbZL+ANwCDAXOJskB/lx4D0nzWXZN1QDgaUlNFJQ1T0PKNKuu3Jqn80hKAh4ZEXPzD0TEh8A3Jf0YuATYlmz7PLWmpvsrwMRc4pR6NX3OjVbtBNxUMMR3J/B9SWtGxLsZYuv2YmkTiyY9Sv8RW9Kr38Bqh2NmZmZmPVREXC2pP3A0ySDKC8CuETE1PeUM4GDSIhIR8TdJ+wGnkxSLmAk8AJxaYl/aS+jITXKBb0XEneUujojfS3qYZApeFs3WdI+IpoJ7XF2kn73S58mSBgBrlugzd08nT8CSN/9L08LZnrJnZmZmZlUXEZeQJDnFjh0CHFLQdgdwR8a+zy5sk7RybracpJVIRrYKc4iyypUqvzNjYK8CZQs+5MlS070sSesAFwMTgH8302f+PfP7OCJXOrGxsTFj6F3fwokPo74DWGFEm6d7mpmZmZl1CZIGS7oHeCqveSvgNUm3ScpcTKLZanvpDadKGpW+rknfb5I7HhFZM5AW13QviGMdkkVkNcB30ml6Le4zIq6NiC0iYovevZut1t4tLG1YwqLXnmTA57ZGvftUOxwzMzMzs45yCbAZcGJe279JClR8Gbgga0eZkidgfSC3+ZQK3rdEfk33fOVquic3lTYFniQZSdo5It5ID+V2Hy7WZ/49e7TFrz9D1C/2lD0zMzMz62n2AI6LiH/lGiKiPiLuJSk8t3/WjrImT5XSmpruSPoy8CjQBGwbEbnNeomIBSTV+Ir1CUlZwx5v4cSH6TVoNfquu2m1QzEzMzMz60j9Wb7CXs58YHDWjqqRPLWopruk9YF7SSpqfDUiphQ5bTywl6ReeW37AC9HxMwi5/coTYvmsnjqfxiw0deQOvo/uZmZmZlZVT0JnJwWmvtEutbpBJJS6Zl06IKfVtZ0v4xkqt7PgXUlrZvX5ZsR8R5JAYlngb9Juo6kdPn3gQM64GN1eotffwaWNnnKnpmZmZn1RCcDjwFvSXoEmAUMAbYDeqXPmXT4MERaevxEkvrst5MMkxXWdH8KPhmV2p3kQ92ctuc/vpf2+SJJ+fLhwD/S14dGxN865EN1cnUzJlHTbxC1nxnW/MlmZmZmZt1IuuRnM5LNdNcEvg6sS7Kn7eb5S4KaU5VSc1lruqcb49Zm7HMcMK4yEXYvdTMm03fNzyGp+ZPNzMzMzLqZiHiLZDPeNsmaPD3Cp1XtIn1fbCdf62SWLllAw0dvscLGX6t2KGZmZmZmHULSccCYiJiZvi4nIuLSLP1mSp4iYoe810uBHcqcbp1I3buvAtB3zc9XORIzMzMzsw5zMfA4SdG5i5s5N0jrLzSnbPIkaShwELAeMBW4OS3QYF1E3YzJoBr6rrFhtUMxMzMzM+sQEVFT7HVblUyeJG1OsvPuSnnNZ0k6ICLuq1QA1r7q3p1M7ZD1qOm7QrVDMTMzMzPr0sqNPJ0HfECyB9NzwIbAdcAVwGfbPzRrq4il1L37KgM2zlx90czMzMysy5P0Esl0vEwiYmSW88olT18BfhwRT6bv/yvpSOBpSWt4+l7n1/DhW0T9Ivqu5fVOZmZmZtaj/IcWJE9ZlUueBgMzCtpeAUSyqZSTp06ubsZkwMUizMzMzKxnSbc/qrhyyVMNsLSgrS7DddZJ1L07mZr+K9J75TWrHYqZmZmZWdVIqgFGAQNI8pxlRMSjWfpxEtSNeXNcMzMzM+vpJG0F3AasSTKLrlAAvbL01VzytL2ktfPe16Sd7yBp/WXuGHFHlhtax2haPJ/Gj99h4KZfr3YoZmZmZmbVdBkwB/gZ8A7Lz67LrLnkaXSJ9l8XvM+crVnHqPfmuGZmZmZmAJsB34qIe9vaUbnkaVhbO7fqqXs32Ry3zxquKm9mZmZmPdpbwIqV6Khk8hQRb1biBlYddTMmUztkfWr69K92KGZmZmZm1XQWcK6k1yPiP23paLlKEzmSxkvavCWdSdpS0kNtCcjaLpY2Uffeq97fyczMzMwMjgeGAs9IqpM0r+AxN2tH5abt/Qa4U9Jk4BbgzoiYU3iSpDWBXYAfAhsAP2nBB7F2kGyOu9jrnczMzMzM4O5KdVRu2t5YSZsCx5IUjviDpDeBt4FFwErA2uljDnA5sFdEZM7crH3UvZtujrvWRlWOxMzMzMysuiLinEr1VbbaXkTMJ5kfOBrYCdgeWJ8kcXoTeBwYDzwUEQ2VCsrapm7GZGpWWIneg4dWOxQzMzMzsw4n6ThgTETMTF+XExFxaZZ+M22SGxH1wD3pwzq5uncn03fNz3tzXDMzMzPrqS4mGeiZmb4uJ4DKJU/WdTQtnkfjxzMYuNlO1Q7FzMzMzKwqIqKm2Ou2cvLUzdR5c1wzMzMzs+VI6g98CVgDGAesFBHTW9JHxbIw6xzqZqSb4w715rhmZmZmZgCSjgfeAx4CxgDDgKslPSZppaz9OHnqZurfnUSfzwyjpk+/aodiZmZmZlZ1ko4kqR5+McnIU64wwGXA54Dzs/aVKXmSdJCkVUscGyrphKw3tPaTbI47xZvjmpmZmZl96hjgnIg4H3g+1xgR44BfAvtm7SjryNMNwPASx75EC7I1az8NH75J1C+mj9c7mZmZmZnlrAU8XeLYVKDoIFExJQtGSBoPbJl7CzwkaWmRU1cA/pP1htZ+6mZ4c1wzMzMzswJTgL2AB4sc2zE9nkm5antHAfuTJE5nArcA7xSc0wTMAW7NekNrP3XvTqZmhcH0Xmn1aodiZmZmZtZZXAiMkTSYZN/aALaU9C3geOAnWTsqmTxFxETgHABJAVwXEe+2IWhrZ3UzJtF3LW+Oa2ZmZmaWExG3SOoDXAD8IG3+HfARcHxE3Ji1r3LT9r4ITIqIxcC/gKGShpYJ6rmsN7XKa1o0l8bZ7zFw5K7VDsXMzMzMrFOJiD9J+jNJdb1VgLnA5Ihoakk/5abtTQC+AjyTvo4S5yk91qslN7bKqns3t97JxSLMzMzMzApFRACT29JHueRpB2Bi3mvrxOpmTIaaXt4c18zMzMwsj6TVgStJcprBfLrP0yciItNAULk1T48Uey2pN7Aa8GFENGaO2tpV3buT6fOZ4dTU9q12KGZmZmZmncm1JInTDcB0oFgF8UzKjTwtQ9JXSPZz2ia97kuSjgOmR8TprQ3A2i6WNlH/3msMHLlLtUMxMzMzM+tsdgSOiogb2tpRpk1yJX0dyI0+ncanQ10vA6ekSZRVScMH04mGOvp6c1wzMzMzs0LzgRmV6ChT8gRcBPw1InYCLiNNniJiNEnJvyMqEYy1zqeb4zp5MjMzMzMrcB1wgqQ2r2/JOm1vU5IRJ1i+6t5DwEltDcRar+7dyfQasDK9VvxMtUMxMzMzM6s6Sf/Me1sDfB14R9KLwKKC0yMivpml36zJ0yxgY+D+Isc2So9bldTNmEwfb45rZmZmZpazIssO+jyWPvcCBrW206zJ05+A8yTNBe7NXStpJ+Bs4PrWBmBt07RwDo1z3mPgF3ardihmZmZmZp1CRGxf7rikmohocdW9rGuezgFuB/7Ip4utngTGAY8CZ7b0xlYZde++Cni9k5mZmZlZKZJOknRnXtO2kt6W9LOW9JNp5CkimoBDJY0GtgdWBeYCj0fEiy25oVVW3buTks1xV9+g2qGYmZmZmXU6kk4lmS33m7zm14GbgYslRUT8LktfmZInSWtFxIyIeBV4teBYb+CkiPhVlr6ssupmTKbP6t4c18zMzMyshMNJ8pXLcg0RMQM4WdJM4BggU/KUddre45KGFTZK+hrwX+C8jP1YBUVTI/XvTaHvmhtVOxQzMzMzsxaRdLikKZIWS3pK0lbNnD9E0p8lfSxpjqR/Shqe4VarAxNLHPsvsG7WmLMmT++QJFAbAUhaVdINJGXK64Htst7QKqf+g+lEY53XO5mZmZlZlyLpIOAa4CZgP2AOMK7YgE16fi3wAPAlkpGkQ4ARwL2S+jRzu4nA/5Y4tj8FM+vKyVptb2fgNuARSb8FjiMp83cMcFVrKlVY29XNmAS4WISZmZmZdR1K9tc5F7g2Is5J2x4gSWKOBX5R5LKDgA2Bz0fEW+k104F7gM2A/5S55YXA7ZLWBe4m2WZpCLAnsBNwQNbYsxaMWCJpH5Ldec8HHgb+NyI+yHojq7y6dyfTa+Aq9Bo0pNqhmJmZmZlltQGwHvDJRrYR0SBpLFBq/519gftyiVN6zQvAms3dLCLukLQ/cBrw27xDLwEHRMTfswZectqepG/lP4B9gLHA8yTDZYXHM2vp/Ma86wZJelPSt4sce1lSFDw+bElcXU39jMn0XdOb45qZmZlZl7Jh+vx6QftUYISkXkWuGQlMlnSWpPcl1Ukam44mNSsi/h4RXwRWANYGVoyIUS1JnKD8yNPtzVybX5EiSKbxNStvfuO5wLPAUSTzG0dFxLQy1w0C7qLIgq50nuOGwCnAI3mHGrLE1BU1LZxN49yZDPriHtUOxczMzMysJVZMn+cXtM8nGdwZAMwrODYEOBSYDvwoPeciYKykzSOisdwNJQ0GBkTEDEmzgGPTxOuOiHgoa+Dlkqeii7XaopXzG5G0HUnCtXqJrjcGaoG7ImJypePujOpmJB+zjyvtmZmZmVnn0lvShLz310bEtXnvc9OmouC6XHuxegq1QB/gGxExB0DSVJLBmG+R1GcoKq0QfjfJ4M/JwBXAEcCbwM8kfTciSl6fr2TyFBFvZumghVozvxHgTpLqGgcD/1fk+EhgCTClYpF2cnXvToaa3vQdOqLaoZiZmZmZ5WuMiC3KHJ+bPg8CZua1DyRJnBYWuWYB8H+5xAkgIiZImkNSMKJc8nM+8CTwG0krAz8ELo6IkyX9GvhlM9d/Iusmub2AnwA7AINZfq1URMSOGbpqdn5jRDQVuW7biHhZ0vol+h0JfAT8VdIuJFns34BjI6JwOLBbSDbHHYF6N1eZ0czMzMysU8kNeAxn2bxgOPBqRBSOSJGeV+wP394sP4JV6H+AvSNipqTvpdeMSY/dDRyZNfCs+zz9mmR467MkmeDcgkfhnMRSssxvXE5EvNxMvyOBocCLwB7A6ST14u8sdrKkIyRNkDShsbHs9MhOKZoaqX//dZcoNzMzM7OuaArwNklBOuCTfZz2AMaXuOZ+YGtJa+Zdsx3JaNWTzdxvEdA3fb0H8F5E/Dd9vw7wcdbAs+7z9APg/Ig4M2vHJbRmfmMWJwN9I+Lp9P1j6UKwWyVtGxGP5Z+czrm8FmDAgAHNZaqdTv2sacnmuGs6eTIzMzOzriUiQtJo4EpJs4EnSEZ/VgMuBZA0AhiS9/f9pSTT7e6VdBZJ1bxfkyRO9zdzy4eAcyVtBnwbuDK9xz7ABRmu/0TWkae+wL+zdlpG/vzGfOXmNzYrIp7P+8Hm3Jc+j2pNn51Z3btJsQiPPJmZmZlZVxQRVwMnkgzS3E6yNGjXiJiannIG8FTe+R8AWwPTgL+QJEAPAHtERHMDMEcBH6R9PkxSwA7gMpJRsBOzxp115Oluko2pHs7acQmtmd9YlqTewPeBFyPi+bxD/dPnbrfXU92MSfQauCq9V/TmuGZmZmbWNUXEJcAlJY4dAhxS0PYGeVP9WmAY8M2IqC9o/2JEfNSSjkomT5KOy3s7DThJ0gYkGeCigtMjIi7NcL/8+Y33p/fJzW8cmz3sZW7cKOkc4AXgm3mH9iPZ5+mpYtd1ZXUzJtN3LZcoNzMzMzPL4A7gJOCm/MaWJk5QfuTp4iJt30gfhYJ0fmI5rZzfmMUFwO8lXQb8C9gSOBO4vJ1KrldN44KPaZo3i75b7F3tUMzMzMzMuoK69NFm5fZ5yroeqkUi4mpJ/YGjSTbGfYHl5zcezKdFJLL0ea2keuA4kg2v3gfOA0ZXMPROoT7dHNfFIszMzMzMMrkUuE7SNsAkYFbhCRFxR5aOsq55QtJXga9FxOj0/ReAE4BLCtYaNaul8xvzjk2nRFIVETcCN7Ykjq6o7t3J0Ks3fVb35rhmZmZmZhn8Nn0+qsTxAHpl6SjrJrnfJKmC8RifjuYEyb5PT0r6RkQ8nKUva5u6GZPpu/oGqHdttUMxMzMzM+sKhlWqo6wjT2cDf4iIn+YaIuJF4MuSriFJqL5SqaCsuGhqoO79KQz64h7VDsXMzMzMrEuoZA2ErMnThiTriYq5jaRUuLWz+plToanB653MzMzMzDKS1Av4CbADyX5ShbUdIiJ2zNJX1qIQ71F6ZOl/6IZ7KXVG3hzXzMzMzKzFfg1cQbLkaCEwt+AxL2tHWUeergfOlCSSDXNnAUOAPYHT6YZV7TqjuhmT6TVoCL0HrVbtUMzMzMzMuoofAOdHxJlt7Shr8jQaGAqcQ1ICPKcJuAY4v62BWPPq3p3sUSczMzMzs5bpC/y7Eh1lmrYXEUsj4hfAZ0hGm34A7A2sFRG/iIioRDBWWtPieTTN+4A+QzeodihmZmZmZl3J3cC+lego8z5PABExG7i3Eje2lqmfNQ2APp8ZXuVIzMzMzMw6N0n5xe6mASdJ2gB4ClhUcHpExKVZ+i2ZPEmaB+wQEf+RNJ9kX6dSIiJWynJDa52GmVMB6POZipWpNzMzMzPrri4u0vaN9FEogLYlT8AlJFX2cq89Na+K6j+YRq+Bq9BrwOBqh2JmZmZm1qlFRNaq4i1SMnmKiHPyXp/dHje37OpnTqXWo05mZmZmZhUlaWhEvJ/l3HLT9r7VgntGRPyjBedbC0RTAw0fvUP/EVtWOxQzMzMzsy5F0orAGcB2JJX3lDsErACsC9Rm6avctL3bWxBTAL1acL61QMOHb8PSRq93MjMzMzNrucuBA4F7gI1JCka8CmwDrA78LGtH5ZIn/6XeSdTPyhWLcKU9MzMzM7MW2h04LSJ+LelYYKeI+F9JA0j2fxqZtaNya57ebHucVgn1s6ah3n3pvfIa1Q7FzMzMzKyrWQn4v/T1y8ApABGxUNIlwOisHWXa50lSDXA4SdY2gOU3142I2DHrTa1l6mdNpXbI+qjGMyPNzMzMzFroPWBo+vo1YDVJa0TEe8AHecealbWE3yXA74C1gYXA3ILHvKw3tJaJCBpmTaPP6p5FaWZmZmbWCncBoyXtnM6umwacKWl94KdA5hl3mUaegO8D5+SXL7eO0TT/A5YuWeD1TmZmZmZmrXM6MAI4HngAOA64DTgCWAr8IGtHWZOnvsCjLYvRKqF+1jQAV9ozMzMzM8tI0q7AYxGxKCLmA3tK6gsQEf+UtCnwReD5iJiStd+sydNYYB/goZaFbW1VP3MqIGqHrF/tUMzMzMzMuop7gXpJ/weMBx4EnskdjIjXgddb2mnW5Ok+4FJJw0kqVSwqOB4RcWlLb27Na5g1jd4rr0FNn/5Vuf/6p4xt1XXTR+9R4UjMzMzMzDL7Msk+TluTrGs6G1gg6TGSZGp8RLzY0k6zJk83pM97pI9CATh5agf1s6bRZ3WvdzIzMzMzyyoingWeJc1RJI0AtiVJpg4Dfi3pI5KZdeMj4tos/WaqthcRNc08XEO7HSytW0TjnPdcLMLMzMzMrA0i4o2IuDEiDgdGkQwIPUayNOl3WfvJOvJkVVD/wXQAal0swszMzMys1SRtAewM7Ah8BegPTAauIVkPlUnJ5EnSPGCHiPiPpPkkU/NKiogVs97UsmmYNRXAI09mZmZmZi2Q7uG0c/r4OrAK8C7JeqefAg+mm+S2SLmRp0tIduPNvS6bPFnl1c+aRk3/Fek1aNVqh2JmZmZm1pW8AcwjWdN0DkmyNKmtnZZMnvI3xI2Is9t6I2u5+llT6fOZ9ZFU7VDMzMzMzLqShcBAYB1gXWBtSdMiYklbOs1UMAJA0kqSTpf0kKRJkjaRdHK6AZVVWCxtouGDN6n1lD0zMzMzs5ZaGdgO+BfJGqe7gdmSxks6VdKWasUIRabkKZ0z+BJwHMnw14ZAX2AkcLekb7T0xlZe48fvEo319HGxCDMzMzOzFomIpoh4MiLOjYhtgVWBA0hymu+T7F37oaTbJf04a79ZR54uI1n/tC6wH6A0qO8B/wDOzPxJLJN6F4swMzMzM6uIiFgQEf+KiGMiYhOSTXTvBfYCrs7aT9ZS5V8Hvh8RCyQV7un0e+DOrDe0bOpnTYOa3tSuuna1QzEzMzMz67Ik9QO2BLbKewwhGRz6G0lRiUyyJk/1JLXQi1kFqMt6Q8umftZUaldbF/WqrXYoZmZmZmZdiqTv8mmiNBKoBWYCD5PMmns4Il5rab9Zk6exwPmS/gNMTdtC0irAqcC4lt7YymuYNY1+w75Y7TDMzMzMzLqiMcAHwCPA9cBDETG5rZ1mTZ6OJ8nSXgGmpG1/BIYBHwMntjUQ+1TTgtk0LZzt9U5mZmZmZq2zWUS8UulOMyVPEfGBpP8BDga2B2YAc4E/AddHxPxKB9aTfVIsYnVX2jMzMzMza6n2SJwg+8gT6YZSv08f1o7qP5gG4D2ezMzMzMw6kczJk6RNSUadBrN8ifOIiPMqF1bPVj9zGr1WHEKvfgOrHYqZmZmZmaUyJU+SfkQy4lQDzAeWFpwSgJOnCmmYNc2b45qZmZmZdTJZN8n9JfAvYNWIWCkiVi54rNKOMfYoSxvqaPj4HReLMDMzMzOrIEn9JW0n6TuSVpa0fkv7yJo8rQlcERGzW3oDa5mGD9+CWEqtR57MzMzMzCpC0vEkm+I+RFLGfBhwtaTHJK2UtZ+sydMEYOMWR2kt9kmlPY88mZmZmZm1maQjgdHAxcCXAKWHLgM+B5yfta+Sa54k5e/QeiPwG0n9gaeARYXnR8RzWW9qpTXMmob69Kf34NWrHYqZmZmZWXdwDHBORJwvqVeuMSLGSfolcDZwVJaOyhWMmEBSCCJHwEUFbbn2AHphbVY/ayp9hgxDyjooaGZmZmZmZawFPF3i2FRg1awdlUuedmhJRC0h6XDgJGBt4AXguIh4KsN1g4CXgeMj4vaCY9uSDMVtRrKJ74URcX2FQ29XEUupnzWNgZt+vdqhmJmZmZl1F1OAvYAHixzbMT2eScnkKSIeyX+fLqTaIiLGp+/XA3YG/hoR87PeUNJBwDXAucCzJENk4ySNiohpZa4bBNwFrFvk2EbAfSQVAc8CdgH+KGleYZLVmTXOnUXUL6Z2iItFmJmZmZlVyIXAGEmDgXtIZs1tKelbwPHAT7J2lGluWLpB7iTg2rzmYcAVwHNZy/xJEknSdG1EnBMR9wB7Ax8Cx5a5bjvgGeALJU45BZgOfDci7ouI44CbgDOzxNVZNMxMi0Ws7mIRZmZmZta9STpc0hRJiyU9JWmrFlx7tqTC5URFRcQtwKEko0y3kCw7+h3wY5IZbTdmvW/WhTWXAK8DX8kL4mGSEubvApdm7GcDYD3gn3n9NABjgd3KXHcn8FKZc3YC7o6I/B/gncBmktbMGFvV1c+aBqqhdrX1qh2KmZmZmVm7yZuNdhOwHzCHZDZas1Ow0oGdU1tyv4j4E7AOsBGwDclSn6ERcVVL+smaPH0ZOC8iPigIYjZJ2b/tMvazYfr8ekH7VGBEfvWLAttGxAHArMIDkgaQJHHF+sy/Z6dXP2sqtausRU1t32qHYmZmZmbWLlo7Gy29thfwR+CDcucVXPOwpCOAwRHxakQ8GRGvRERTS2PPmjwtIUlQilkVWJqxnxXT58I1UvPTWAYUuygiXm5ln/nHPyHpCEkTJE1obGwsH3EHqp81zZvjmpmZmVl319rZaJAkVyuSLB/K6kPgN8D7ku6WdGA6ANNiWZOnu4ELJH01vzGdl3gBeR+8GbkNqYqVO4fsSVib+oyIayNii4jYonfvcgUHO07TkgU0zZvlzXHNzMzMrLtr1Ww0SRuQ7Ml0OFCX9WYR8W3gM8DB6XXXATMl3Srpm5Jqs/aVNXk6kWTK3GOSPpY0WdJHwOMkmdwJGfuZmz4PKmgfSJLkLMzYT755ZfrMv2en1jArLRbhkSczMzMz69p652Z5pY8jCo63eDZaOtXvD8BfIuLxlgYUEYsi4taI2I8kkTqMpPL434D3s/aTadglImZL2hLYE9gKWIUkKXkS+FdEZJ37lquhPpxlM83hwKsFBR8yiYgFkt5L+8iXe/9aS/ushvpZSZV2jzyZmZmZWRfXGBFblDnemtloPyaZ7rd3WwJLR5m2J9naaJv0Xo9lvT7znLV0QdVd6QNJvYGVWpA4QZI8vQ3sA9yf9lML7EEyx7G1xgN7STojb+HXPsDLETGzDf12mPqZ06gZMJheA1eudihmZmZmZu0pfzZa/t/qRWejSVoH+H8k5cYXpXlITXqsN7A0Ikou/0nzjV2B/UmSr0HAo8DpwO0RMSdr4JmSJ0l9SfZMmhQRN6Vrn+4GVpL0GPDtiPiwuX4iIiSNBq6UNBt4AjgSWI203LmkEcCQiHg664cALibZcPdvkq4jKV3+feCAFvRRVQ0fTKOPN8c1MzMzs+6vpbPRdiRJeG4v0lcDcA7JWqhSPiRJzJ4jqfJ3a0S81/Kws695upCkskVuMdWfgXdIsr+hJMlLJhFxNckaqh+Q/AAGA7tGRK60+BnAU1n7S/t8EdiL5Af+j/T1oRHxt5b0Uy3R1Ej9h296c1wzMzMz6wnyZ6MBy8xGG1/k/H8BWxY8fpMe2xK4tpn7/Qb4fERsGRGXtjZxguzT9vYHjo2IG9K1T8OB70TEbZIWkezQm1lEXEKy8W6xY4cAh5Q4Np1P50IWHhsHjGtJHJ1Fw8fvQFOji0WYmZmZWbfX0tloEfER8FF+H5K2SfuaUOweklYB5qTT+a7IaysV08dZYs+aPK0GTExf70kyPHZv+v5joF/GfqyI+pnJoFuti0WYmZmZWQ8QEVdL6g8cTTLD7QWWn412MCUGTjL4gKTQ3TMk0/aaK0xXtDx6oazJ0xvA1pKeJllH9HhE5EoLfocuUtGus6qfNRX17kPtKmtVOxQzMzMzsw7R2tlo6fHfAr8t0/0PSXIYSJYaVUTW5OnXwB+BU0gWa50AIOkpknmG361UQD1Rw6xp1K62HqrJlPCamZmZmVkZEfGnvLfTgOciYkHheZIGAztn7TdTwYj05tsA5wNfi4hcWfH7gK93lcIMnVFEUD9rmtc7mZmZmZm1j4eAjUoc24KkGF4mWUuV3wz8PiKWqaoXEedkvZEV17TgI5YunketkyczMzMzs4qQdDuwYe4tcLOkxUVOXRuYnrXfrNP29gCuy9qpZVc/axqAy5SbmZmZmVXOpcBh6etNgVdJikjkawLuB36ftdOsydPdwM8lvRARs7N2bs1ryCVP3iDXzMzMzKwiIuIJkhLoSAI4L6+SX6tlTZ5WIBl92lfSB8Cs5eOLUW0NpieqnzmV3oOHUtN3hWqHYmZmZmbW7URE2Wp7kr4UEc9k6Str8jQHGJPxXGuB+llTvd7JzMzMzKydSFqLpKz5dkBfPt07SiT71dZQyX2emsvWrHWW1i+mcfZ7DNhkh2qHYmZmZmbWXV0O7AjcSFJBfDHwJLALsBnw7awdZR15QlINsDEwmCIlziPi0ax9WaLhg+lA0OczLhZhZmZmZtZOdgBOiYhrJP0M2C8iTpZ0KnAPsC/wjywdZS1VvhXwd2B1Ph3myhdkHOqyT31Sac/T9szMzMzM2ssKwCvp60nA5gARsVTS1cAVWTvKOvJ0Ocm6p5+T1EFfmvUGVlr9rKnU9B1ArxWHVDsUMzMzM7Pu6k1gOPAYMBkYLGlYREwDFgGrZe0oa/K0KfDtiBjb0kittPpZ06j9zLBc+UQzMzMzM6u8W4FLJBERf5L0EvAbSZcBvyTZAyqT5dYulfAmyXCXVUgsbaLhg+le72RmZmZm1r7OI0mgdkvf/xT4GvBv4H+AE7N2lHXk6UzgAknTI+LZFgTara1/SusH4hrnvE801Hm9k5mZmZlZO4qIRuDIvPdPShoGfB6YHBHzsvZVMnmSNJ+kEETOAOBpSU3AkuVjipWy3tSSzXEB+qzukSczMzMzs46UJkyZNsbNV27k6RKWTZ6sgupnTYWaXtSuum61QzEzMzMz61aKDASVFRErZjmvZPIUEWdnvZm1XMOsadSuug7qXVvtUMzMzMzMupt2GQhqySa5qwJfBvry6V5PIikksVVE/KzSwXVn9bOm0m+9UdUOw8zMzMys22mvgaCsm+TuC4wB+vFpBqe8169VPrTuq2nRXJoWfOxiEWZmZmZm7UzSQc2dExF/ztJXS6rtPUdSpeLnJKNPFwLfAC4Ajs3Yj5Hs7wRQ6zLlZmZmZmbt7cYS7QHUAQuAiiZPnwcOiIgXJP0bODUiJgGTJK0MnA7cl7GvHq9hVlppzyNPZmZmZmbtbeUibQNJ9nr6FfD9rB1lTZ4agPnp69eAz0mqjYgGYDzg9U4tUD9rGr0GrkqvFVzd3czMzMysPUXE3CLNc4FbJK0AXAZskaWvmoz3fA74Vvp6Esl6p23T96613UL1M6d61MnMzMzMrPreBDbJenLWkacLgbGSPhMR35F0G3CzpPuAvYEHWh5nzxSN9TR8/A79P/vlaodiZmZmZtbtSVqlSHMNsCZwGvBG1r4yJU8RMU7SV4GN06YjgCuBrwD/Ao7PesOerv7Dt2BpE31cLMLMzMzMrCN8SOk9n+qA/bN2VDJ5kvQU8CDwb+CJiHgGeAYgIhYBP8x6E/tUQ1ppz9P2zMzMzMw6xA9ZPnkKYB7wUIk1UUWVG3maTVKW/DRgiaQnSIpDjAcmRETFd+ztCeren4L69Kf34KHVDqVdrX/K2FZdN330HhWOxMzMzMx6soi4sVJ9lUyeImJ3SSJZQLUt8FXgxyTl/OZKepg0mUrLllsGde9MpO+an0c1vaodipmZmZlZjyDpf4EvA4OLHI6I+FGWfsqueUpHl15OH79Lb7wmsE36+AFwiaQPI2KtzNH3UEuXLKDhgzdZ4XNbVzsUMzMzM7MeQdJlwFHAO8BHRU7JPKMua7W93I17A8OBDYARwBpAL+D9lvTTU9W9+yoQ9F1ro2qHYmZmZmbWUxwIXBIRJ7a1o2aTJ0kbAzunj+2AAcA0kmISN5JM2/u4rYH0BEvemQiqoe+an6t2KGZmZmZmPUUTFdpaqVy1vRuBnUhGlz4CHgKOAx6IiOmVuHlPUzdjIn1WH05Nn/7VDsXMzMzMrKe4GviFpMfTquGtVm7k6SCSpOks4MqImNOWG/V00dRI/buvMXDUrtUOxczMzMysJ7kUmADMkPQqUJhARUTsmKWjmjLHTgWeT59nSXpS0rmStk3XPlkL1M98g2iso+/aGzd/spmZmZmZVcofSeo1TALeA+YWPOZl7ahcqfKLgIsk9SUpVb4jsDvwS2CxpEdJ5g4+GBEvt+5z9Bx1M5Jq7i4WYWZmZmbWoXYHjoyIa9raUbmRJwAioi4iHoyIUyNiC+AzJLv0vgkcCrwg6d22BtLd1b0zkd4rrU7vQatWOxQzMzMzs55kNknBuzZrNnnKl26auw6wKtCPpCZ6kFSwsBIigiUzJnrKnpmZmZlZx/stcIakz7S1o7JrlyStCnwF2Cp9bElSqvx94BHgKuChiHi9rYF0Z41z3mPpwjlOnszMzMzMOt5XgM2AdyW9DcwvOB4RMSpLR+VKlb9GsrBKwCzgYeAkkmTp1VYE3WPVveP1TmZmZmZmVbIAuKMSHZUbeXqRZIjr4YiYWImb9VR177xCTd8B1K62brVDMTMzMzPrUSLi0Er1Va7a3v6VuklPVzdjEn3X2gipRUvMzMzMzMysjSR9rblzIuLRLH1VZb8mSYeTTAFcG3gBOC4inipz/qbAZcCXgY9J1lr9v4iIvHNeBjYpuPSjiFitstG3TNPieTR89DYDNtmhmmGYmZmZmfVUD5MUuVNBe+S97pWlow5PniQdBFwDnAs8CxwFjJM0KiKWKyGYVsV4EHgZOAD4InABSYW/i9Nz+gAbAqeQFLLIaWi/T5LNJ/s7uViEmZmZmVk1bF6kbSDwNeCnwH5ZO+rQ5CktdX4ucG1EnJO2PQC8ChwL/KLIZT8niXPviFgE3JNu3HuqpMsiogHYGKgF7oqIyR3wUTKre2ci1PSmz9DPVjsUMzMzM7MeJyJeLHHoCUlLgP8HZJom1tGLcDYA1gP+mWtIk5+xwG4lrtkJGJ8mTjl3AquQlE4HGAksAaZUON42q3tnEn2GjqCmtm+1QzEzMzMzs2U9T7I0KJOOTp42TJ8L94WaCoyQVGyu4YYlzs/vbyTwEfBXSfMkzZX0B0mDKhF0a0VjPXXvv0a/tQuXYpmZmZmZWTVJWhE4Engv6zUdveZpxfS5cGOq+SSJ3ABgXpFrip2f399IYChJefXLgC+QTA8cBuzY1qBbq+7916Gp0fs7mZmZmZlViaT5LFscApLcoz9JEYkfZe2ro5OnXIWLwuBz7UtLXFN4fk7u/JOBvhHxdPr+MUmzgFslbRsRjy3ToXQEcARAnz59WhB+y9TNSLbHcrEIMzMzM7OquYTl84kgGbS5NyJezdpRRydPc9PnQcDMvPaBJInQwhLXFE6/G5R3jIh4vsh196XPo4BlkqeIuBa4FmDAgAGlErM2q3tnIr1XWYteK6zUXrcwMzMzM+uSWrF90VdJqm5vDiwiqch9YkTMLHLuCrmaCRFxdjNxbF4in1hOR695yhV0GF7QPhx4NX/fpoJrip0P8Kqk3pIOkVRYgrB/+vxhq6Ntg4il1M2YTN+1POpkZmZmZpYvb/uim0hKhc8h2b5oWInzNwLGkyzf+S5wArB1ek1tkUvGSVohQxynAiUTtkLVSJ7eBvbJNaQfdg+SH0Yx44GdJA3Ia9uHpEDECxHRCJwDnF1w3X4k+zxl/mFUUuNHM1i6eB791vZ6JzMzMzOznMLtiyLiHmBvkkGPY0tclivssF9E3BsRNwPfIZlltnOR878I3C9pYIkY1pX0CMlIVqlS5svp0OQpHVkaDfxE0gWSdgfuAlYDLgWQNELSV/IuuxroQ7K/056STgNOBUZHRH16zgXA3pIuk7RTmkFeDFweEW92zKdb1pLceiePPJmZmZmZ5WvN9kWvAJek5+Xk1ioVG63anaSo3P2FFbglfZ8kYfoycBqwVdbAO3rNExFxtaT+wNEkmeULwK4RkSs/fgZwMGkRiYh4T9JOJFX0bidZK3VaRFyc1+e1kuqB40gKQbwPnEeSqFVF3TsTqem/Ir1XWataIZiZmZmZdUbNbl8UEU35ByLi6iL97JU+Ty48EBGPSNoZuBd4QNIuJANH1wAHAM8BB0fEKy0JvMOTJ4CIuISk6kWxY4cAhxS0TSCZ01iuzxuBGysRXyXUzZhI37U3JhmVNDMzMzPrMXpLmpD3/tq0YFtOa7YvWoakdUhmmk0A/l3snIj4P0lfB8YBjwKrAKsDZwIXFiZoWVQleerumhbOpnH2ewwc9Y1qh2JmZmZm1tEaI2KLMsdbs33RpyclidN4kkTrOyWKziU3iHhB0vYklflWB3aMiEfK9V9ORxeM6BHq3pkE4GIRZmZmZmbLy9++KF+57YsAkLQp8CTJ6NXOEfFGczeLiEnANiSF634jaZXWBA0eeWoXS2ZMRL370Gf1DaodipmZmZlZZ5O/fVH+uqdy2xch6cska5jmAV+PiCnFzkvPvbxI8wvAN4HHJOVX+o6IODpL4E6e2kHdOxPpM/SzqHexkvNmZmZmZj1a/vZF98My2xeNLXaBpPVJEqeZJFPv3m3mHnuVaH8TWKHgeJAUs2uWk6cKW9qwhPqZb7Dil75V7VDMzMzMzDqdiAhJo4ErJc0GniDZx2mZ7YuAIRHxdHrZZSRT9X4OrCtp3bwu34yI9wruUXSz3bZy8lRh9e+9Bkub6Lu293cyMzMzMyumJdsXpaNSuwO9gJuLdHciSeW9dufkqcJyxSL6ruViEWZmZmZmpWTdvijdGLdTrIdxtb0KW/LORGpXW5de/QZWOxQzMzMzM6sgJ08VFEubqHt3sqfsmZmZmZl1Q06eKqjhw7eIuoX0XcvJk5mZmZlZd+PkqYLqZqTrnTzyZGZmZmbW7Th5qqAl77xCr4Gr0Hul1asdipmZmZmZVZiTpwqqe2cSfdfaCEnVDsXMzMzMzCrMyVOFNM77kKZ5szxlz8zMzMysm3LyVCF1MyYCuFiEmZmZmVk35eSpQupmTEK1/eiz+vBqh2JmZmZmZu3AyVOF1L0zkb5rbohqelU7FDMzMzMzawdOnipgad0i6mdNo+9am1Q7FDMzMzMzaydOniqg7t1XIZbSd+2Nqh2KmZmZmZm1EydPFVA3YyKohr5rfr7aoZiZmZmZWTtx8lQBde9MpHbI+tT0XaHaoZiZmZmZWTtx8tRGsbSJundfpZ/3dzIzMzMz69Z6VzuArq5+1jSiYQl91/J6p0pY/5Sxrb52+ug9KhiJmZmZmdmyPPLURnXvpJvjru1Ke2ZmZmZm3ZmTpzaqe2civVYcQu8VV6t2KGZmZmZm1o6cPLVBRFA3YyJ9vd7JzMzMzKzbc/LUBo1zZ9K04GP6reXkyczMzMysu3Py1AZ1MyYBeHNcMzMzM7MewMlTG9S9MxH1WYHa1dardihmZmZmZtbOnDy1Qd07E+m71udRTa9qh2JmZmZmZu3MyVMrzZ49m4YP33KxCDMzMzOzHsLJUys99dRTQLhYhJmZmZlZD+HkqZWeeOIJqOlFnzU2rHYoZmZmZmbWAZw8tdLjjz9On9WHU9OnX7VDMTMzMzOzDuDkqRXq6+t55pln6Ospe2ZmZmZmPYaTp1b4+OOP2Wmnnei//heqHYqZmZmZmXUQJ0+tMHToUP71r3/Rf8SW1Q7FzMzMzMw6iJMnMzMzMzOzDJw8mZmZmZmZZeDkyczMzMzMLAMnT2ZmZmZmZhn0rnYAZpWy/iljW3Xd9NF7VDgSMzMzM+uOPPJkZmZmZmaWgZMnMzMzMzOzDKoybU/S4cBJwNrAC8BxEfFUmfM3BS4Dvgx8DFwF/L+IiLxztgUuBjYDZgAXRsT17fUZrPvwdD8zMzMzy6LDR54kHQRcA9wE7AfMAcZJGlbi/M8ADwIBHABcC1wAHJ93zkbAfcA04FvAv4A/Svp2u30QMzMzMzPrUTp05EmSgHOBayPinLTtAeBV4FjgF0Uu+zlJnHtHxCLgHkl9gVMlXRYRDcApwHTgu+lo1H2ShgBnAre388cyMzMzM7MeoKNHnjYA1gP+mWtIk5+xwG4lrtkJGJ8mTjl3AqsAW+adc3f+NL70nM0krVmRyM3MzMzMrEfr6ORpw/T59YL2qcAISb1KXFPsfIANJQ0A1ix3TitjNTMzMzMz+0RHF4xYMX2eX9A+nySRGwDMK3JNsfNzx8r1mX/PT0g6AjgifRuSFjcbeXG9gcZWXmtdnC5q9aX+3lhr+btjreXvjrWWvzvWGv2rHUB76ejkSelzlGhfWuKawvNzlramz4i4lqTwRJtImhARW7S1H+tZ/L2x1vJ3x1rL3x1rLX93rDUkTah2DO2lo6ftzU2fBxW0DyRJchaWuKbw/EF5x+YVtOX3mX9PMzMzMzOzVuvo5GlK+jy8oH048GpBwYf8a4qdT3rNAuC9Mue81spYzczMzMzMPlGN5OltYJ9cg6RaYA9gfIlrxgM7pYUhcvYBPiLZYDd3zl4FBSf2AV6OiJkViLuUNk/9sx7J3xtrLX93rLX83bHW8nfHWqPbfm9UfLCnHW8o/Qy4ErgQeAI4EtgG+EJETJU0AhgSEU+n568BTAJeBH4NjALOAU6JiIvTc0YBzwJ3A9eRlC4/DjggIv7WgR/PzMzMzMy6qQ5PngAkHQ8cDaxGMnp0fEQ8lR67ETg4IpR3/hbAZcD/ADOBqyPiooI+dwUuAj4PvAX8KiJubO/PYmZmZmZmPUNVkiczMzMzM7OupqPXPHULkg6XNEXSYklPSdqq2jFZ5yVpb0nzC9ok6TRJb0laJOkBSZ+vVozWeUjqJek4SZMkLZQ0UdKRkpQe93fHipLUR9L5kt5Mvzv/lvTFvOP+7lhZkvqmv3tuzGvz98aKkrSqpCjyuD093i2/O06eWkjSQcA1wE3AfsAcYJykYdWMyzonSV8l+a6o4NCZwOnAxcB3gJWA8ZJW6tgIrRM6A/gVyfdmb+A24LfAielxf3eslEuBXwCjgX2BRcBDktZLj/u7Y805i2T5Qz5/b6yUUenzrsBWeY9T0/bu+d2JCD8yPkj+AJ4O/C6vrRaYClxe7fj86DwPoC9wElAHfAwsyDs2CJgPnJzXtjLJnmXHVTt2P6r6valJvwfnFbRfBczyd8ePUg+SP0rq878HQH+SBOp0f3f8aO4BbA4sAD4Abkzb/L3xo+QDOAZ4v8Sxbvvd8chTy2wArAf8M9cQEQ3AWGC3agVlndI3SP7l5UTgioJjXyHZxDn/ezQbeAR/j3q6lYA/A3cUtL8KDAG+jr87VtxC4MvADXltDUCQ/GOOf+9YSZJ6A9eTVDWekXfI3xsrZyTw3xLHuu13x8lTy2yYPr9e0D4VGFGwz5T1bM8CwyLicpI/XvLlvkdvFLRPzTtmPVBEzI6IIyPi+YJDewHvAGun7/3dsWVERGNEPB8RsyXVpFPJryf5/XMT/r1j5Z0M9CHZRiafvzdWzkhgBUlPSloi6R1JJ6VrdLvtd6d3tQPoYlZMn+cXtM8nSUQHkAxHWg8XETPKHF4RqIuI+oL2+Xz6HTMDQNJhJHvX/QJ/dyybM4Cz09dnRsSrkr6FvztWRLqA/zRgx4ioT2vT5Ph3jhUlqQbYmGTU+wSSbYJ2J0nA+5GMfHfL746Tp5bJ/UYpHEnItS/twFis6xLLf4dy7f4O2SckfY+kQM3tJJuLn4q/O9a8fwAPAzsAZ0rqAyzG3x0rkP4B/Efgj5Hut1l4Cv7eWHEC9gTeiojcjKyHJA0kGcm8gG763XHy1DJz0+dBJJv15gwk+SIs7PCIrCuaC/SVVJuumcsZyKffMevhJB0LXEIyX/x7ERGS/N2xZkVEbg3CI5IGkay9PBl/d2x5R5Gs5d4zXfeUo/S9f+dYURHRBPy7yKH7gJ+Q/E3cLb87XvPUMlPS5+EF7cOBVyMtJWLWjCkk//JSWN5+OElhAOvhJP0K+A3wF+DbedMe/N2xoiQNlXRomizle56kYMRs/N2x5e0LrEVSFbYhfYwCDsp77++NLUfSmpKOkDSk4FD/9Lnb/s5x8tQyU4C3gX1yDZJqgT2A8VWKybqeJ4ElLPs9WhnYDn+PejxJR5NMz7sMOCQiGvMO+7tjpQwmKRDx7YL2XUjK3N+Jvzu2vB8DWxY8XgPuTl/fir83Vlxf4PfA9wva9yP5Dt1BN/3ueNpeC6TTZkYDV0qaDTwBHAmsRrI5oVmzImKBpCuA8yUtJfklcxpJsZE/VDU4qypJawAXAS+R/NHy5YLF2xNISt/7u2PLiIjJkv4OXJKucZoKfAv4AfDDiJjn3ztWKCKWGwGQtBj4KCImpO/9vbHlRMQ0SbcA56XfjUnA/iTJ0z7d+W8dJ08tFBFXS+oPHA0cC7wA7BoRU6samHU1vyRZJ3cCyfzfJ4GDI6JLzwO2NtuV5F/zNgOKLd4egr87VtpBwFkkI5drABOB/SPi9vS4vzvWGv7eWCk/IqnueQzJ75xJwH4RkdvbqVt+d+RlOmZmZmZmZs3zmiczMzMzM7MMnDyZmZmZmZll4OTJzMzMzMwsAydPZmZmZmZmGTh5MjMzMzMzy8DJk5mZmZmZWQZOnszMOglJL0gKSVtW6f5nS1rQzDk3Snq5hf1un36uLdoWYcl4oszjmgrcIySdUIl48/ps8c/RzMyqz5vkmpl1ApI2A0aSbGx6GPBsdSPqUqYC3ytxbGYF+t8KeLMC/eQ7DxhQ4T7NzKydOXkyM+scDgZeBP4MnCPpuIhYWOWYuorFEfF0e3XeHn1HxBuV7tPMzNqfp+2ZmVWZpF7AgcB9wF9JRiQOyDt+iKQPJe2YTu2rkzRR0t5550wvMW1tet45u0p6RNJ8SUvSvr5VJJ7/lfRqes4ESV9t4efZXdLzkhZLehIYVuSc/5E0XtIiSR9IukLSCnnHH5Z0raRxkuZJurglMRS5X27q4I8lvSfpbUnrp8e+K+ml9PO+IemogmuXmbYnaQdJz6Sf75X059oo6ZD0+Nnpz+27kl5L+302/+dYOG0v/ZlNSH8esyRdL2mVFhzvLelcSW/l/XfbsS0/MzMzW56TJzOz6tsZWAMYExHvAuNJpu7lGwRcD1wF7Al8CPw17w/ofUmml+UeP03bbwSQ9CXgHuBl4JvA/wKLgJslDcm7zwrABcBZwP4kidwdkjLNVJD0FeCfwKtpTA8Cvys4Z2PgUSBIksST03huK+juUJIped8mSSrL3bd3sUeRU88AjgB+GRHTJR0M3Aw8AuwN/Am4VNKJJe6zGXAvyXTAb5H8fG8DehWcuiFwLnA2sB/QH/hbsZgkrQfcATwB7A4cD+xF8t+62eOp69L2y4B9gMnAvS1NfM3MrDxP2zMzq76DgOcjIjcS8WfgL5I2iohJaVsf4MSIuA1A0kySaX47AH+PiOdznUlaFbgFGEfyBzzAJsAdEfHzvPPeAp4DvgzcnWsGvp+bqiapFvg7sDHw3wyf5STgNeC7ERHAfZIGA/mjOWeQJB97RERdep8pwKOSvhYRj6bnzQd+ERENzdxzE6DoOenPcHJe028j4l/psRrgVyRJ65Hp8fslBXCGpKuLTJ08BXgH2DciGkkSlKVA4cjYIGCniHgmvVcv4C5gFPCfgnO/BPQFRkfEe+n5C4D1shyX9HngEODwiPhDes19ktYAzge+XuxnY2ZmLeeRJzOzKpI0iGQk6A5Jg9NE498ko0KFo0/5a2/eSZ+XKTqQ/pH+V5Ik6HsRsRQgIm6IiP0lDZC0haQDgVwi1Teviybgmbz309PnwRk/0tbAfWnilPP3gnN2AO4HmvJGiJ4C5gH5U81ez5A4AbwBbFniMb3g3Il5rzcE1gTGFoxW3UuS/HypyL22B+5OE6ecvxU5rxGYkPe+6H+v1H+AOuAZSb+WtD3wz4j4bcbj26fP9xR8jnuAbST1KXJPMzNrBSdPZmbVtT/JVLnzgNnpY0badlDBH76L8l4vTZ8Lf4//GtgW2D8iPso1pknTTcAckkTll0C/3OG865fkEq5m7lPKyiRTCvO9X/B+VeDHJKNF+Y8VSaYv5szKeM8lETGhxGNJwbn5fa6aPt9cEEeu0mF+LDmrAR8UtBWr6FeX9ecYEVNJksYXSUboHgLekbRvluN5n2NGwee4GKhNYzYzswrwtD0zs+o6iGSk5+SC9k2AK0lGpTKR9D3gWOCnEVFY6vwKYBeSNTOPRkRduvaoVInv1voI+ExB26oF7+eSTGH7HcsrTLza09z0+ecsO9qWM61I27vAkIK2wvctFhFPAHumRTN2JJn++DdJ60bEu+WOp58jSEb9io3UdeTP1MysW/PIk5lZlaR/+H4N+EtEPJz/AK4hGbEpnLpXqq8vkhQN+EtEFNsYdiuS6XQP5NYZAbvlLm/L5yjwELBXQWGE3QvOeRz4PPCf3AgR8DYwGti0grE0ZzJJsrd2/mgVSbJ3HrBSkWseBfZI10vlZE5wi5F0mKSpkmojYlG6Jut0kiIUazV3nOTnKWBQwefYiSSZbix+ZzMzaymPPJmZVc9BJCMGhWuCiIgmSX8lmab1ZLlO0op7/yCZknaVpC+zbEL0PMlUtL3T6nJvkRQRyFWUW4HKuYBkrc+dkq4i2fj3yIJzziP5TLdJup5k+uAZwDpprC3VP63yV8ySiHih2IGIaJR0NvAbSZBUORwGXAhMofjI02jgBeDvkn5Psm7qvPTY0iLnZ/Eoycjg3yRdTVIc5PT0/i+QjCyVPB4RDZL+DtyUfp5JJOugTgf+X8H0QTMzawMnT2Zm1fN94IlcBbUixgBHAz9spp+RwLrp62Ibug4jKWPdH/ht2jaJpNT2pSSjUn/KHHUZEfGKpJ1J1tvcQVKy/OfATXnn/EfS10kSrb8DS0jKcP8gIma04rbDSdZxFfMGsEGZeK+UtAg4juRn9BFJAYjTCope5M6fJGkv4P+RTD2cQjK680dgQStiJyJeS/s8F7g9bX6IpOBHA9DccUimX54LnEoybfJNksqAbdofy8zMlqUi/99gZmZmRUjaCZgfEf+X17YLSVn4URGRpZy7mZl1UR55MjMzy+4rwImSTiAZVVuPZMTnUSdOZmbdn0eezMzMMkoLYZwFHEhSrOFjkvVmp0bEvGrGZmZm7c/Jk5mZmZmZWQYuVW5mZmZmZpaBkyczMzMzM7MMnDyZmZmZmZll4OTJzMzMzMwsAydPZmZmZmZmGTh5MjMzMzMzy8DJk5mZmZmZWQZOnszMzMzMzDJw8mRmZmZmZpaBkyczMzMzM7MMnDyZmZmZmZll4OTJzMzMzMwsAydPZmbW7UjaXlKUedxQ7RjNzKzrUURUOwYzM7OKkrQisHGRQycCewE7RMQTHRuVmZl1dU6ezMys3Ul6Hng/Ir5R0P5b4HBgUEQsbecYtgP+DRwbEZe3573MzKx78rQ9MzNrV5J6AxsBLxY5PAp4uVTi1MzUu8z/+pfG8DvgWeDKVnwMMzMzelc7ADMz6/Y+B/QFXihybCTw9zLXblWhGH5CksBt2d4jXGZm1n05eTIzs/a2Wfq8zMiTpHWAVQrb80XE0229uaRewPHAPRExoa39mZlZz+XkyczM2ttIYDHwWkH7qPS5ZPKUTrcrKSIaM9z/m8D6wEEZzjUzMyvJyZOZmbW3kSTrmpoK2r8ABPDfMtc2NNO3Mtz/AGBaRDyW4VwzM7OSnDyZmVl7Gwk8XKR9N2B6RMwrc+2WbblxOmVvd+CqtvRjZmYGTp7MzKwdSVoJWAdYvaB9D2Br4K5y11dgjdKmwCDg8Tb2Y2Zm5uTJzMza1cj0eWtJ1wPPkyQ0+6TtwyXtHRH/bKf759ZVTWyn/s3MrAfxPk9mZtaecsnT/sBXgF+nbbuRTOVbGxjYjvfPjXjNbsd7mJlZD6GIzHsMmpmZtYika4A9I2LtasdiZmbWVh55MjOz9jQST5kzM7NuwsmTmZm1C0kiWd/0SrVjMTMzqwQnT2Zm1l7WJ6l055EnMzPrFrzmyczMzMzMLIMeX6q8pqYm+vfvX+0wzMzMzMy6hUWLFkVEdMsZbj0+eerfvz8LFy6sdhhmZmZmZt2CpMXVjqG9dMuM0MzMzMzMrNKcPJmZmZmZmWXg5MnMzMzMzCwDJ09mZmZmZmYZOHkyMzMzMzPLoCrJk6TDJU2RtFjSU5K2ynjdIElvSvp2kWPDJd0pab6kDyT9RdJnKh+9mZmZmZn1RB2ePEk6CLgGuAnYD5gDjJM0rJnrBgF3AesWObYy8BiwOvAd4Bhge+CvlYvczMzMzMx6sg5NniQJOBe4NiLOiYh7gL2BD4Fjy1y3HfAM8IUSpxxH8ll2iYixETEG+BkwQtLQCn4EMzMzMzOrIEl7S5qf4bxNJY2XtEDSW5JOTvOLDtPRI08bAOsB/8w1REQDMBbYrcx1dwIvlTlnX+CWiPjkhx4R/4qIdSPi/bYGbWZmZmZmlSfpqyQz0somQelynAeBAA4ArgUuAI5v7xjzdXTytGH6/HpB+1SSUaJeJa7bNiIOAGYVHpDUB/g8ME3S5ZJmS1ok6eZ0Op+ZmZmZmXUikvpKOgl4CGjMcMnPgd7A3hFxT0ScD1wInCqpth1DXUZHJ08rps+Fw3Lz01gGFLsoIl4u0+fKQC/gl8Aw4H+BI4GdgZuLXSDpCEkTJE1obMzy38rMzMzMzCroG8CpwInAFRnO3wkYHxGL8truBFYBtqx4dCX07qgbpXLDcVGifWkr+sxlmvOAfSOiEUDSPOBvkr4UEc/kXxAR15IM9TFgwIDCWMysihoaGpg7dy6zZ89mzpw5zJ8/nyVLllBXV1fyUep4Y2MjTU1NLX4sXbqUiCAilnmd/yjVHpH8Sil8bklboXLHshw3MzPrhJ4FhkXEHElnZzh/Q+DhgrapeceerFxopXV08jQ3fR4EzMxrH0iSOC1sRZ8L0ufxucQp9UD6vBlJsQnrAtY/ZWyrr50+eo8KRmKVsGjRIqZOncq0adP46KOPPkmI5syZU/T17NmzWbiwNb8GoF+/fvTt23eZR+/evenVq1fZR58+fZZrq6mpQdInz4WPUu25Yzm5Naz5a1mzthVqbj1sB6+XNTMzK+mqq67qLWlCXtO16eDFJyJiRgu7XZHis9dyxzpERydPU9Ln4Sy77mk48Gq04p9P02z1Q6BPwaHciJT/SdasnUQEH330EW+88UbRx3vvvVf0upVWWomVV16ZwYMHM3jwYD772c9+8jq/feWVV2bgwIGfJEbFEqS+fftSW1vr5MHMzKyTuOqqqxojYosKdytK/13fmtlrrVKN5OltYB/gfoB0gdceJBX3WusBYHdJK+TNg8wNQ3TIEJ5Zd7Z06VKee+45nn/++eUSpHnz5i1z7lprrcWIESPYbbfdGDFiBCNGjGD48OEMGTKElVdemUGDBtGrV6naMGZmZmZFzSWZvZZvUN6xDtGhyVNEhKTRwJWSZgNPkBR3WA24FEDSCGBIRDzdgq7PI9kv6h5JF5FspHsRcGtETK7kZzDrKd5++20eeOAB7r//fh588EE++ugjAGpraxk2bBgjRoxg6623/iRBGjFiBMOGDaN///5VjtzMzMy6oSkks9Xy5d6/2lFBdPTIExFxtaT+wNEkG+O+AOwaEbkFX2cAB9NMrfeCPielG+n+P+DvJPMfryep4GFmGSxcuJBHHnmE+++/n/vvv59JkyYBsMYaa7Dnnnuyyy678NWvfpV11lnHI0dmZmbW0cYDP5Y0ICJyC6T3AT4iySc6RIcnTwARcQlwSYljhwCHlDg2nRJJVUT8B9ixIgGa9QBLly7lhRde+CRZevzxx2loaKBfv35st912HHbYYeyyyy5ssskmXk9kZmZmHarIbLSrgaNIZpr9GhhFMlBySkTUd1RcVUmezKw6Fi9ezG233ca4ceN44IEH+PDDDwEYNWoUxxxzDLvssgvbbLMN/fr1q3KkZmZm1sMtMxstIt6TtBNwGXA7SeXu0yLi4o4MSj19f5ABAwZEa0sjW+W5VHn7WLJkCddddx2/+tWveP/991l99dXZZZdd2GWXXdhpp50YOnRotUM0MzOzbkLSoogYUO042oNHnsy6sbq6Oq6//nouuOACZsyYwde+9jVuueUWtttuO0/FMzMzM2shJ09m3VBDQwM33ngj559/Pm+99RZbb701f/7zn9lhhx2cNJmZmZm1Uk21AzCzymlsbOSGG27gc5/7HEcccQRrrLEG48aN47HHHuPrX/+6EyczMzOzNnDyZNYNNDU18Ze//IWNNtqIH/7wh6yyyiqMHTuWp556il122cVJk5mZmVkFOHky68Kampq45ZZb2GSTTTjooIMYMGAAd911F88++yy77767kyYzMzOzCnLyZNYFLV26lL/97W+MHDmSAw88kNraWv7+97/z3HPPsffeeztpMjMzM2sHLhhh1sXMnDmTfffdl6eeeoqNNtqI2267jf3224+aGv9biJmZmVl7cvJk1oVMnjyZ3Xffnffff58bbriBH/zgB/Tq1avaYZmZmZn1CE6ezLqIRx99lH322Yfa2loeeeQRttxyy2qHZGZmZtajeJ6PWRdwyy23sPPOO7P66qvz9NNPO3EyMzMzqwInT2adWERw4YUXcuCBB7LVVlvx5JNPMmzYsGqHZWZmZtYjedqeWSfV2NjIz372M6677joOPPBArr/+evr27VvtsMzMzMx6LI88mXVC8+fPZ6+99uK6667jtNNO46abbnLiZGZmZlZlHnky62RmzJjBnnvuyUsvvcR1113HYYcdVu2QzMzMzAwnT9aNrH/K2FZdN330HhWOpPVeeukldt99d+bMmcPYsWPZddddqx2SmZmZmaU8bc+sk3jggQfYeuutiQgef/xxJ05mZmZmnYyTJ7NO4IYbbmD33Xdn2LBhPP3004waNaraIZmZmZlZASdPZlUUEZx55pn88Ic/ZIcdduCxxx5j7bXXrnZYZmZmZlaE1zyZVUl9fT2HHXYYf/nLXzj00EP5/e9/T21tbbXDMjMzM7MSPPJkViXHHHMMf/nLXzjvvPP44x//6MTJzMzMrJPzyJNZFdxxxx387ne/44QTTuD000+vdjhmZmZmloFHnsw62FtvvcWPfvQjttxySy644IJqh2NmZmZmGVUleZJ0uKQpkhZLekrSVhmvGyTpTUnfbua8GyVNr0iwZhXU2NjIgQceSFNTE7fccgt9+vSpdkhmZmZmllGHJ0+SDgKuAW4C9gPmAOMkDWvmukHAXcC6zZy3C3BwRYI1q7Bzzz2XJ554gmuuuYYRI0ZUOxwzMzMza4EOTZ4kCTgXuDYizomIe4C9gQ+BY8tctx3wDPCFZvofCFwLzKhUzGaV8tBDD3H++edzyCGHcOCBB1Y7HDMzMzNroY4eedoAWA/4Z64hIhqAscBuZa67E3ipmXMARgNTgdvbFKVZhX344Yd8//vfZ8MNN+SKK66odjhmZmZmlpKUOSfq6ORpw/T59YL2qcAISb1KXLdtRBwAzCrVsaRtgEOBI9ocpVkFRQSHHnooH374IbfeeisDBw6sdkhmZmZmPYakqZJGlTj2JcrkGIU6ulT5iunz/IL2+SSJ3ABgXuFFEfFyuU4l9QP+CJwbEa8nswPLnn8EaZLlBfvW3i6//HLuvvtuLrvsMr7whS9UOxwzMzOzbk/ST4H+6dv1gUMlvVXk1G2AUgM4y+no5CmX1USJ9qWt7PdsYBFwSZaTI+JakrVRDBgwoDAWs4p5/vnnOemkk9hrr7046qijqh2OmZmZWU+xGnBO+jqAXxQ5ZylJ8brMm2529LS9uenzoIL2gSTBL2xph5L+h6TYxE/S971JkzFJvdXcMJRZO1mwYAH/+7//y2qrrcb111+Pv4pmZmZmHSMizouImoioIckNtsq9z3v0jojVIuKqrP129MjTlPR5OMuuexoOvBoRrRkF2gvoAzxd5FgDyTqoG1vRr1mbHHnkkbzxxhv8+9//ZrXVVqt2OGZmZmY9UppAVUQ1kqe3gX2A+wEk1QJ7kFTca41rgbsL2o4Dticpgz6tlf2atdqYMWP405/+xJlnnsl2221X7XDMzMzMehRJ/wSOj4gp6etyIiK+maXfDk2eIiIkjQaulDQbeAI4kmRO4qUAkkYAQyKi2EhSsT7fBd7Nb5M0C6iPiAmVjN8si9dff52f/OQnbLvttpxxxhnVDsfMzMysJxrEp4UgVmT5mgut0tEjT0TE1ZL6A0eTrFV6Adg1Iqamp5wBHMynRSTMuoz6+nq+853vUFtby5gxY+jdu8P/J2ZmZmbW40XEDnmvt69Uv1X5yy4iLqFEZbyIOAQ4pMSx6WRIqiLiGOCYVoZn1mqnnnoq//nPf/jHP/7BOuusU+1wzMzMzCyV7gu7IzAUuBDYFHg+It7L2of/WdysQu69915+85vf8LOf/Yx99tmn2uGYmZmZGZDOevsrsCfJnrKDgOtIZsGNlLR9REzK0ldHlyo365bee+89Dj74YDbbbDMuvvjiaodjZmZmZp+6CPgysC1JrYXcTLbvAzNIRqEycfJk1kZLly7lBz/4AQsWLOCvf/0r/fv3b/4iMzMzM+so3wFOjognyCscEREzgfOAbbJ25Gl7Zm100UUXMX78eK677jo22mijaodjZmZmZssaAMwqcWwx0C9rRx55MmuD6dOnc9ZZZ7H//vvzox/9qNrhmJmZmdnyngaOlpQ/cJQbgfoh8EzWjjzyZNYG5513HjU1NfzmN79BcnV9MzMzs07oJOARYDJwP0ni9DNJnwe2AL6etSOPPJm10uuvv86f/vQnfvzjH7P22mtXOxwzMzMzKyIi/gN8CXgW2BdoAvYBPgS2joinsvblkSezVjrnnHPo06cPp556arVDMTMzM7MyImIi8N1ixyQNjog5WfrxyJNZK0yaNIkxY8bw85//nKFDh1Y7HDMzM7MuR9LhkqZIWizpKUlbNXP+VyU9Lmm+pKmSzpJUm+E+p5c59gOS6XyZtCp5kjSgNdeZdRfnnHMOK6ywAieddFK1QzEzMzPrciQdBFwD3ATsB8wBxkkaVuL8ESTrlRak518KnEy2PZrOkjS6oL/PSnoQ+BPwUta4MyVPknaUdJ2k1yXVA/PSDPE1SVdJyrzIyqyre+mll/jrX//K0UcfzZAhQ6odjpmZmVmXoqTK1rnAtRFxTkTcA+xNsgbp2BKXfRvoBewXEfdHxBXAb4Ej1HzVrv2BX6R5Sz9J5wD/BT4LHBARO2eNveyaJ0k7Ab8GNgUeA+4E3gQWASsDawFbAYdJehn4ZUSMy3pzs67orLPOYsUVV+T444+vdihmZmZmXdEGwHrAP3MNEdEgaSywW4lr+gINJPsy5XwEDEyPLSl1s4i4U9JuwF3AgST7Ol0KnB8Ri1oSeMnkSdIfSXbbvRS4PSI+LHPuqsDBwFWSHo+IQ1oShFlX8dxzz/GPf/yDs88+m1VWWaXa4ZiZmZl1RRumz68XtE8FRkjqFRFNBcfGkIxKXSjpImAEcAzwj4gomTjlRMSjkr4G3AdMAM6KiIaWBl5u5Ol54IgigRcL5iPgN5KuAH7a0iDMuoozzzyTlVdemWOOOabaoZiZmZl1Vr0lTch7f21EXJv3fsX0eX7BdfNJlhUNAOblH4iINySdAFxLsm8TwHPAocUCkPQSn26Eu8whkn2dXpc099PuY1T5j5QomTxFxJVZOkiDWyUiPk6zt8uzXmfWlTz99NOMHTuWX/3qV6y00krVDsfMzMyss2qMiC3KHM+tUSpMbnLtS5e7QDoMuI4keforsCbJuqmxknaKiLqCS/5TpP82Kzdt72bgxxFRmBEWnrcHyYdYq8KxmXUqZ555JkOGDOGoo46qdihmZmZmXVluxGcQMDOvfSBJ4rSwyDWnAPdExI9zDeno1iTge8D1+Se31zKictP2dgT+K+n7EfFE4cG0XPlvgR8Br7ZHcGadxWOPPcYDDzzAxRdfzMCBA6sdjpmZmVlXNiV9Hs6y656GA69GRLERo3VIyop/IiImS/oI2Li5G0qqSc8bTJGK4xHxaJbAyyVPm6UBPizpQuDsiFia3vxrwI0kVTJ+C/wyy83MuqKI4IwzzmDo0KH89Kde0mdmZmbWRlOAt4F9SPZuIt3sdg9gbIlrXgO2zm+QtAGwKjCt3M3SzXf/DqzOp1MD8wVJGfRmlVvzNAv4hqRjSTaf2jmda/hDksoW04DtI+KxLDcy66r+/e9/88gjj3D55ZezwgorVDscMzMzsy4tIiLdtPZKSbOBJ4AjgdVIKn3nNsUdEhFPp5edC9wm6Q/ALcBQ4GxgOvDnZm55OckmvD9Pz19uTVVWKj4qVnCStDFwG7BR2nQFyZ5OLaqL3hkNGDAgFi4sNq3SqmH9U0r9Y0P7mT56j5LHIoKtt96at99+mylTptCvX78OjMzMzMys65G0KCIGZDjveOBokqTpBeD4iHgqPXYjcHBEKO/8bwGnA5uQrJV6ADg1HfQpd5/FwLcjos1/aJbdJDe9WW/gAJLNrD4EhpDUVV+JZLNcs27rvvvu46mnnuKaa65x4mRmZmZWQRFxCXBJiWOHAIcUtN0B3NGKW70JVGT6UNmRJ0kjSdY9jSKpqHc8sC1JNYu+wM8j4tZKBFItHnnqXKox8lRKRPD+n4+jafE81jr8GtSrdpnj5UaszMzMzHqqrCNPHUXSAcD5wPci4tm29FWuVPlpwBnAB8A3ImJceui+NKn6IzBG0j7ATyNidlsCMetsFr/+f9S/P4VVv3H0comTmZmZmXVekuaz7D5PA4CnJTUBSwpOj4jItIlnuWl75wFjgCMjYm7+gYj4EPimpB+TDLVti/d5sm4kYilzHruJ3iuvyYBNv17tcMzMzMysZS6hIzfJBb4VEXeWuzgifi/pYeCmltxU0uHAScDaJIvDjsstDmvmukHAyySLyW4vOLYnyUjZxsBHwD+B05rb5NesmEWvPknDB9NZdc/jUU2mypVmZmZm1klExNmFbZJWzs2Wk7QSSTW/1wvPK2e5DaLybnhnxsBeBbbKekNJBwHXkCRc+5GUDRwnaVgz1w0C7gLWLXJsB5Jk6ZW0zwuA7wB/zRqXWU4sbWLu42OoXXVdBmz0tWqHY2ZmZmZtIGmwpHuA/MGarYDXJN0mKXMxiZLJU8ENp0oalb6uSd9vkjseEY0Z+xFJjfZrI+KciLgH2Jukit+xZa7bDngG+EKJU04AnoiIH0bE/RFxHUkd92+kZdbNMls46VEaPnqblbY50KNOZmZmZl3fJcBmwIl5bf8m2ZT3yyQDL5lkSp6A9Umq60GyK2/++5bYAFiPZJQIgIhoINlJeLcy190JvFTmnKeBqwraXk2fy45omeWLpU3MfeIWaoeszwqf+2q1wzEzMzOzttuDZJnQv3INEVEfEfcCpwD7Z+2o2X2eKmzD9LlwbuFUYISkXhHRVOS6bSPiZUnrF+s0Is4r0rxX+jy5VZFaj7Tw5X/TOPtdhux7GlLWf1swMzMzs06sP8tX2MuZDwzO2lFH/3W4YvpcWMRhfhpL0XrwEfFyS26STjE8FbgjIt4ocvwISRMkTWhszDTj0HqAaGpkzpO30mfoBvT/7FeqHY6ZmZmZVcaTwMmSlsk10rVOJwBPZO2oo0eelD4Xlg3MtS9t8w2SPajuB2YARxQ7JyKuJdn0lwEDBlS8hKF1TQteepCmuTNZdeefkCzPMzMzM7Nu4GTgMeAtSY8As4AhwHZAr/Q5k44eecrtFzWooH0gSeK0sC2dS9oeeJSkgt9OEfFRW/qzniMaG5j75F/ps+bn6Dd8i2qHY2ZmZmYVEhH/JSkY8WdgTeDrJBW8xwCbp8cz6eiRpynp83CWXfc0HHg1Ilo9CiRpb+A2YBKwa0TManWU1uMs+O/9NM3/gFV3P9qjTmZmZmbdTES8RZnq3lllTZ4eAebl7p2+b83ms1OAt4F9SKbWIamWpALG2Fb0R9rHl0gSp2eBPSJiXjOXmH0iIpj/3Fj6rPFZ+q03qtrhmJmZmVkbSToOGBMRM9PX5UREXJql30zJU0TskPd6KbBDmdPLRiVpNHClpNkki7OOBFYDLgWQNIJkt9+nW9D1dUAD8Ctg44KRg9ci4uPWxGs9Q92MSTR89Bar7PYLjzqZmZmZdQ8XA48DM9PX5QRpLtKcssmTpKHAQSR7M00Fbo6I97J0XDKyiKsl9QeOJhk6e4Fkmt3U9JQzgIP5tIhEWWn58pHp23uKnLI/cHsbQrZubsGL96E+/Rmw0bbVDsXMzMzMKiAiaoq9bquSyZOkzUl23l0pr/ksSQdExH1tuWlEXEKy02+xY4cAh5Q4Np2CpKpYm1lWTUsWsGjy4wzYdEdq+vSvdjhmZmZm1omVG3k6D/iAZD3ScyQb3F4HXAF8tv1DM2t/C195iGisZ9AXdqt2KGZmZmZWIZJeYvntkUqKiJHNn1U+efoK8OOIeDJ9/19JRwJPS1qjrdP3zKotIljw4jj6DP0sfVYfUe1wzMzMzKxy/kMLkqesyiVPg0k2ms33CskUuSGAkyfr0urffZWGD6azyq5HVjsUMzMzM6ugdClQxZVLnmpINq7NV5fhOrMuYf6L96HafgzY6GvVDsXMzMzM2pGkGmAUMIAkz1lGRDyapR8nQdYjLa1byKJJjzFgk+2p6btCtcMxMzMzs3YiaSuSPWHXpHihuQB6ZemrueRpe0lr572vSTvfIS0R/ukdI+7IckOzzmDhKw8TjXUMHOVCEWZmZmbd3GXAHOBnwDssP7sus+aSp9El2n9d8D5ztmZWbRHB/Bfupc/qI+gzdINqh2NmZmZm7Wsz4FsRcW9bOyqXPA1ra+dmnVH9e68lhSJ2+RmStwgzMzMz6+beAlasREclk6eIeLMSNzDrbBa8OA7V9mXAxttXOxQzMzMza39nAedKej0i/tOWjparNJEjabykzVvSmaQtJT3UloDM2tPSukUsnPQoAzbazoUizMzMzHqG44GhwDOS6iTNK3jMzdpRuWl7vwHulDQZuAW4MyLmFJ4kaU1gF+CHwAbAT1rwQaybWv+UsdUOoaiFkx4hGpYwcNSu1Q7FzMzMzDrG3ZXqqNy0vbGSNgWOJSkc8QdJbwJvA4uAlYC108cc4HJgr4jInLmZdbQFL9xH7ZD16bPGhtUOxczMzMw6QEScU6m+ylbbi4j5JPMDRwM7AdsD65MkTm8CjwPjgYcioqFSQZm1h7r3X6d+5hussvNPXCjCzMzMrBuTdBwwJiJmpq/LiYi4NEu/mTbJjYh64J70YdYlLXjhPtTbhSLMzMzMeoCLSQZ6ZqavywmgcsmTWVeXFIp4hBU+vy01/QZWOxwzMzMza0cRUVPsdVs5ebIeYeGkR4n6xQz6ggtFmJmZmfVEkvoDXwLWAMYBK0XE9Jb0UbEszKwzW/DiOGpXW48+a36+2qGYmZmZWQeTdDzwHvAQMAYYBlwt6TFJK2Xtx8mTdXv1M9+g/v0pDPzCbi4UYWZmZtbDSDqSpHr4xSQjT7k/CC8DPgecn7WvTMmTpIMkrVri2FBJJ2S9oVlHm//iONS7DwM22aHaoZiZmZlZxzsGOCcizgeezzVGxDjgl8C+WTvKOvJ0AzC8xLEv0YJszawjLa3//+zdd5hdVdn+8e896Zk0ek9CKNKDQOhIC1ICGEBQERFUsNAEVECKVAk/ehVBlFcBpUoLRQwlQGhBAmJCCIRQQ02fSZnMPL8/9j5wcnLOzJ6SOVPuz3Wd68xZe+21n8l75M2TtdazFlD1vyfovcGOdHGhCDMzM7POaA3g+RLXpgJFJ4mKKVkwQtIYYFjuI/CEpLoiXXsDL2d9oFlrqn4jKRTRZ6gLRZiZmZl1UlOA/YB/F7m2e3o9k/qq7R0HHEySOJ0F/B34oKBPLTAL+EfWB5q1prkTHqXbCmvRY42Nyh2KmZmZmZXHhcCtkgaQnFsbwDBJBwInAz/LOlDJ5CkiJgLnAEgK4MaI+KgZQZu1qkWfTmXR9Mkst9tRLhRhZmZm1klFxN8ldQcuAH6QNv8B+AI4OSJuzjpWfcv2tgAmRcR84AFgVUmr1hPUf7I+1Kw1zHv1UejSjcpNXCjCzMzMrDOLiP+T9FeS6nrLA7OBNyKitjHj1FcwYjywad7PL5V45a5lJukoSVMkzZf0nKTtMt7XV9K7kr5d5NpOkl6QVJ2O/aPGxGQdS13NAub970kqv7YDXXr1K3c4ZmZmZlZmkXgjIsZFxP8amzhB/XuedgUm5v3cIiQdDlwPnEuSdB0HPCppaES8U899fYH7gIFFrm0IPEIyQ/Y74JvATZLmRMRdLRW7tR/VbzxLLKyiz+Z7lTsUMzMzMysjSasA15DkNAP46pynL0VElyxj1bfn6aliP0vqCqwIfB4RizNHndwrkqTphojI7ad6DJgMnAgcX+K+nUkSrlVKDH0qMA34XkQE8IiklUgKXTh56oTmvfoIXZdfkx5rblzuUMzMzMysvG4gSZz+QpIzFKsgnkl9M09LkLQtyXlOO6b3bS3pJGBaRJyRcZh1gUHA/bmGiKiRNBqob4rgXuAx4IfAC0WuDwduSROn/HsOk7S6C110Los+m8bCDyex3K4/XqaFIgafOrpJ900bNaKFIzEzMzNrfyQdBfwGWBOYAJwUEc/V038l4FJgX5LtR2OBX0bE1AYetTtwXET8pbkxZzokV9JuQG726XS+mup6HTg1TaKyWD99f6ugfSqwjqRS02U7RcQhwKdFYqsEVi8xZv4zrZNICkV0pXKT3codipmZmZkVkbeV5xbgIJLjjx6VtHaJ/t1IJlO2Bo4CjgDWAR5OK+nVZy7wYUvEnSl5Ai4Cbo+I4cCVpMlTRIwiKfl3dMZxcjv35xa0z01jqSx2U0S83sQx869/SdLRksZLGr94caNWHlobV1ezkKrXH6f3+tvTpXf/codjZmZmZgUKt/JExEPA/sDnJFt5ijmcZFLkmxFxd0TcC3wf6MtXRe5KuRH4laQezY0967K9TUhmnCA5VCrfEyTTbVnkZqwKx8i1N2X9YaPHjIgbSNY+UllZWXiftWPVk5+lbmEVfYe6UISZmZlZG9WUrTwHAI9ExHt590wgWYG2FEn3532sAHYDPpD0KlBd0D0i4ltZAs868/QpsFGJaxtSZDldCbPT974F7X1IkpyqjOPkm1PPmPnPtE5g3quP0HW51egxsKF/gDAzMzOzMmnKVp7NgDck/U7Sx5IWShotaalK3Kl+JPlBX5LVbU+TbDnqkteee2U+1ybrzNP/AedJmg08nLtX0nDgbODPGceZkr4PYck/rCHA5IKCD5lExDxJ09Mx8uU+v9nYMa19qpnxIQs/mMiAXY5YpoUizMzMzKxeXSWNz/t8Q7ryKyfLVp45BddWAo4kqZb347TPRcBoSV8vrAIeEbvUF6Ckioho9Kq3rDNP55CU/L6JrzZbjQMeJalycVbGcaYA7wMjcw3p5q8RwJiMYxQzBtivIEsdCbweEZ80Y1xrR6omPgWIyo12KXcoZmZmZp3Z4ojYKu91Q8H1pmzl6QZ0B/aOiNERcQdwMMn2ogMbCkjSbyTdm9e0k6T3Jf2ioXvzZZp5Sk/fPVLSKGAXYAWS5XDPRMSrWR8WEZGOcY2kmcCzwLEk50ZdDiBpHWCliHi+Eb/HJSQH7t4p6UaS0uWHAYc0YgxrxyKCqklj6bHWxnTtu2K5wzEzMzOz0vK38uRPdNS3lWce8EJEzMo1RMR4SbNICkbcUephkk4jWS13WV7zW8BtwCWSIiL+kCXwTMmTpDUi4sOImExyoG3+ta7AbyLi91nGiojrJPUCTiCppjEB2DOvPvuZJOc5ZV53FRGvStqPZOrun8B7wJERcWfWMax9q/l0KotnfEC/YZn2+pmZmZlZ+TRlK89bJDNPhbqy9AxWoaNI8pUrcw0R8SFwiqRPgF8CmZKnrMv2nilWc13SN4DXgPMyjgNARFwaEQMjondEbJ9/GFZEHBERRROniJgWEYqIu4pcezQiNo+InhGxfkTc3JiYrH2rmvgUVHSh99d2KHcoZmZmZla/pmzl+Rewg6TV8+7ZmWS2alwDz1sFmFji2mtAqaITS8maPH1AkkBtCCBpBUl/ISlTvgjYOesDzVpaRB1Vk56m19pb0KVX5mIpZmZmZlYG6czSKOBnki6QtA9wHwVbeSRtm3fb5STL/R6WNFLSoSTL7saRJFb1mQh8p8S1gylYWVefrNX29iBZR/iUpCuAk0jK/P0SuLYplSrMWsrCDydRO/czeu98eLlDMTMzM7MMGruVJyI+k7QDcCnwN6CG5JyoX2bIRS4E7krLmj9IcszSSsC+JLUSMtdJyFowYoGkkSSn854PPAl8JyI+y/ogs2WlauJY1LUHvdfbtuHOZmZmZtYmRMSlJMlQsWtHAEcUtL1N3lK/RjznHkkHA6cDV+Rd+i9wSETcnXWsksmTpGIl/0YDmwNbAwdK+jJ5ioh7sj7UrKVE7WKqJz9Dr3W3pqJ7r3KHY2ZmZmZtUJog3S2pJ7A8MCci5jV2nPpmnpYqylAgvyJFkCzjM2tVC959lbrq2VRu+I1yh2JmZmZmbZSkAUBlRHwo6VPgxHQZ3z0R8UTWcepLnpaqrmfW1lRNegr1qKTXkK3KHYqZmZmZtUFphfAHSSZ/TgGuBo4G3gV+Iel76aG7DSqZPEXEuy0Qq9kyU1ezkOo3n6P313ZAXbuVOxwzMzMza5vOJ6nKd5mk5YAfAZdExCmSLgZ+Sz2H7ObLekhuF+BnwK7AAJYucR4RsXu22M1axvyp44lF86ncaJdyh2JmZmZmbdeWwP4R8Ymk75PkQLem1x4Ejs06UNZS5ReTlCX/LzANcGlyK7vqiU9RUTmAngM3LXcoZmZmZtZ2VQM90p9HANMj4rX081rAjKwDZU2efgCcHxFnZQ7RbBmqW1hN9dsv0XfzvVCFa5WYmZmZWUlPAOdK2hT4NnANQHoU0wU0fMjulwqX35XSA3i8cTGaLTvVU56D2hpX2TMzMzOzhhwHfEZy8O6TwLlp+5XAFODXWQfKOvP0IHBA+jCzsquaOJYu/Veh++oblDsUMzMzM2vb1ga+FRGLCtq3iIgvGjNQfYfknpT38R3gN5LWBZ4jWTeYLyLi8sY82NqHwaeOLncIS6mtns2Caa/Qb5sDkVTucMzMzMysbbsH+A1wS35jYxMnqH/m6ZIibXunr0IBOHmyVlH9xjMQdVRuuHO5QzEzMzOztm9h+mq2+s55yrofyqxVVU16im4rDKTbSoPLHYqZmZmZtX2XAzdK2hGYBHxa2CEi7skyUNY9T0jaHvhGRIxKP28O/Aq4NCJeyTqOWXMsnvMpCz+YyICdfuAle2ZmZmaWxRXp+3ElrgeQqXxz1kNyvwXcBTwNjMp7yHrAOEl7R8STWcYya46qSU8D0NtV9szMzMwsm7VbaqCsM09nA3+KiJ/nGiLiVWAbSdeTJFTbtlRQZqVUTxpL99XWp9tyq5U7FDMzMzNrByLi3ZYaK2vytD5wUolrdwCHtUw4ZqXVfPEBiz55m+V2O6rcoZiZmZlZOyGpC/AzYFdgAEufdRsRsXuWsbIWhZhO6ZmlLYHPM45j1mRVk54CRO8Ndix3KGZmZmbWflwMXE2y5agKmF3wmpN1oKwzT38GzlKyQ/9BkgoVKwH7Amfw1T4os2UiIqiaNJYeAzela98Vyh2OmZmZmbUfPwDOj4izmjtQ1uRpFLAqcA5wXl57LXA9cH5zAzGrz6JP3mbxjA/pN+yAcodiZmZmZu1LD+DxlhgoU/IUEXXA8ZJ+R7J8bzmSKa4XI+KzlgjErD7VE5+Ciq70/toO5Q7FzMzMzNqXB4EDgCebO1Dmc54AImIm8HBzH2rWGBF1VL3xNL2GbEGXXn3LHY6ZmZmZtXGS8ovdvQP8RtK6wHNAdUH3iIjLs4xbMnmSNAfYNSJeljSX5FynUiIi+md5YDr2UcBvgDWBCcBJEfFcPf03Aa4EtgFmANcC/y8iIq/PfiQl1b8GfABcA1yb38fap4UfTKR27udU7nJkuUMxMzMzs/bhkiJte6evQgE0L3kCLiWpspf7uUWSEEmHk+yTOhd4ieSk30clDY2Id4r0Xxn4N/A6cAiwBXAByX6rS9I+2wP3ArcBp5AsLbwyHeKalojbyqdq4lOoWw96rbtNuUMxMzMzs3YgIrJWFW+UkslTRJyT9/PZLfGwtFrfucANufElPQZMBk4Eji9y2zFpnPtHRDXwkKQewGmSroyIGpIKGu8DP0z3Z/1b0kYk9dydPLVjUbuY6snP0mvdbajo3rPc4ZiZmZlZByNp1Yj4OEvf+pbtHdiIZ0ZE/DNDv3WBQcD9eTfWSBoN7FXinuHAmDRxyrmXpET6MGAcSQWNeWnilPMFsHzm38DapAXTJlA3fw6VG+5c7lDMzMzMrB2S1A84E9iZJG9Q7hLQGxgIdMsyVn3L9u5qREwBdMnQb/30/a2C9qnAOpK6RERtkXueLNI/d20c8Cfg+5KOB/6PJKn6IXBjpuitzaqa9BQVPSrptfYW5Q7FzMzMzNqnq4BDgYeAjUgKRkwGdgRWAX6RdaD6kqe1mxFgKf3S97kF7XOBCqCSpU/47Vei/5fjRcQ4Sb8n2eeU2+v0MMn+p6VIOho4GqB79+6N+w2s1dTVLKB6yvNUbrAT6prpHwPMzMzMzArtA5weERdLOhEYHhHfkVRJcv7TZlkHqm/P07vNj3MpuSmywuITufY6lqYi/XPqACSdD5xGcpjvoyQV984nKSBxSOFNEXEDcANAZWWlq/G1UfPfHk8smk/vDb9R7lDMzMzMrP3qD7yQ/vw6cCpARFRJupQkh8gk0zlPkiqAo0iytkqSWaJ8ERG7ZxhqdvreF/gkr70PSSJUVeKewsN9cp9nS+oGnAxcHxGnpe1PSnoXeFjSbhHRIicKW+uqmvQUXSqXo+fATcsdipmZmZm1X9OBVdOf3wRWlLRaREwHPsu71qCsJfwuBf5Aci5TFUlCk/8qXGpXypT0fUhB+xBgcokzmaaU6A/JWsUVgZ7A8wV9nknfN8oYm7UhdQurmP/2eHpvsBOqyLKdzszMzMysqPuAUZL2SFfXvQOcJWkw8HMg84q7TDNPwGHAOfnly5toCklJ8ZHAvwDSmaMRwOgS94wBfiqpMiJyM1MjSarpTSCZsZoF7AD8Le++3KFAS50dZW1f9ZvPQW0NlRu5yp6ZmZmZNcsZwDokq9UeA04C7iCpgVBHcuxRJlmTpx7A2MbFuLSICEmjgGskzQSeBY4lmT26HEDSOsBKEZGbSbqO5CDdhyRdDAwl2d90akQsSu+5ALhI0mzgEWA9kvOkXkw/WztTNfEpug5Yle6rrd9wZzMzMzOzPJL2BJ6OiOqImAvsm54VS0TcL2kTYAvglYiYUt9Y+bImT6NJZnueaFzYS4uI6yT1Ak4gORh3ArBnROTKj59JUmZcaf/pkoaTVNG7i2Sv1OkRcUnemJdImgv8Mn19ANwKnF2k9Lm1cbVVs1jw7qv02/bbJOcqdyyDTy01ydqwaaNGtGAkZmZmZh3Ww8AiSS+QrGT7N8nECgAR8RZLH5/UoKzJ0yPA5ZKGkFSqqC64HhFxedaHRsSlJPuoil07AjiioG08ybK8+sb8I/DHrDFY21U9+RmIOipdZc/MzMzMmmYbknOcdiDZ13Q2ME/S0yTJ1JiIeLWxg2ZNnv6Svo9IX4WCdNmdWXNVTRxLtxUH0X2lweUOxczMzMzaoYh4CXiJJbcG7USSTP0EuFjSFyQr68akRxk1KFO1vYioaODlcmjWIhbP/pSFH050oQgzMzMzazER8XZE3BwRR5HUUBgBPE2yNekPWcfJOvNk1iqqJiV1SXwwrpmZmZm1FElbAXsAuwPbAr2AN4DrSfZDZVIyeZI0B9g1Il5OizEUO4PpSxHRL+tDzUqpmvQU3Vf/Gt0GZD6rzMzMzMxsCekZTnukr92A5YGPSPY7/Rz4d3pIbqPUN/N0KclpvLmf602ezJqr5vP3qfn0HZbb/ehyh2JmZmZm7dvbwBySPU3nkCRLk5o7aMnkKf9A3Ig4u7kPMmtI1aSnQBVUbrBTuUMxMzMzs/atCugDrAUMBNaU9E5ELGjOoJkKRgBI6i/pDElPSJokaWNJp6QHUJk1S0RQNekpeg7clC59lit3OGZmZmbWvi0H7Aw8QLLH6UFgpqQxkk6TNExNOFA0U/KUrhn8L3ASyfTX+kAPYDPgQUl7N/bBZvkWffwWi2dOp/eGrrJnZmZmZs0TEbURMS4izo2InYAVgENIcprDSM6u/VzSXZJ+mnXcrDNPV5LsfxoIHAQoDer7wD+BszL/JmZFVE18Eiq60vtr25c7FDMzMzPrYCJiXkQ8EBG/jIiNSQ7RfRjYD7gu6zhZk6fdgN9HxDyWLhzxR2CTrA80KxR1tVS/8TS9hmxJl559yh2OmZmZmbUCSUdJmiJpvqTnJG3XiHvPlpSpoJ2knpJ2kvQbSf+U9DHwPLALcCeQuVpZ1nOeFpHUQi9meWBh1geaFVr4wf+onTfDB+OamZmZdRKSDic5Y+lc4CXgOOBRSUMj4p0G7t0EOK2BPt8DtktfmwHdgE+AJ0lWzT0ZEW82Nu6sydNo4HxJLwNT07aQtHwa+KONfbBZTtXEsahbT3qtu3W5QzEzMzOzZSwt1HAucEOuwrekx4DJwInA8fXc2wW4CfgMWKOex9ya9nkK+DPwRES80dzYsyZPJ5Nkaf8DpqRtNwFrAzOAXzc3EOucoraG6snP0mu9bajo1rPc4ZiZmZnZsrcuMAi4P9cQETWSRgN7NXDviUA/4GpgVD39No2I/zU30EKZkqeI+EzSlsAPSdYGfgjMBv4P+HNEzG3pwKxzmD9tAnUL5lLpKntmZmZmncX66ftbBe1TgXUkdYmI2sKbJK0LnE2SYG1V3wOWReIE2WeeSA+U+mP6MmsR1ROfoqJnH3qt/fVyh2JmZmZmLaOrpPF5n2+IiBvyPvdL3wsnYOaSFLSrJDke6UvpUr8/AX+LiGck1Zs8LSuZk6d0Y9YuwACWrtIXEXFey4VlnUFdzQKqpzxP5UY7oy7dyh2OmZmZmbWMxRFRX3KTO5y2sFperr2uyD0/JVnut38zY2uWTMmTpB+TzDhVkGSEhb9QAE6erFHmv/UiUbPAS/bMzMzMOpfZ6Xtfkgp4OX1I8oyq/M6S1gL+H3AkUC2pK+lkTvpzXUQUS7haXNZznn4LPACsEBH9I2K5gtfyyzBG66CqJo2lS5/l6bHWxuUOxczMzMxaT64A3ZCC9iHA5IgonJHanSTRuguoSV+XptdqSEqPN0hSL0k7S/qupOUkDW5s4FmX7a0OHBURMxv7ALNi6hbMY/7U8fT9+ghU0aXc4ZiZmZlZ65kCvA+MBP4FIKkbMILkiKRCDwDDCtq+B5yUtn/U0AMlnQycSbLfKtL7zpfUF9g3ImbXd39O1pmn8cBGGfuaNaj6zXFQu9gH45qZmZl1MunM0ijgZ5IukLQPcB+wInA5gKR1JG2b9v8iIsbnv0iSL9LP9SZPko5Nn3cJsDVf7a26EvgacH7W2EvOPEnaIu/jzcBlknoBzwHVhf0j4j9ZH2pWNXEsXQesRvdV1yt3KGZmZmbWyiLiujS3OIHk7KYJwJ4RMTXtcibJMUkqPkKj/BI4JyLOTw/ZzcXwqKTfkpQ/Py7LQPUt2xvPkhUwBFxE8aoYAXjtlWVSO28mC957jf7bHkxSddLMzMzMOpuIuJSv9i4VXjsCOKKee68Arsj4qDWA50tcmwqskHGcepOnXbMOYtYYVZOfgaijt5fsmZmZmdmyNwXYD/h3kWu781UBiwaVTJ4i4qn8z5L6A1tFxJj08yBgD+D2iCg84MqspKqJT9JtpcF0X3FguUMxMzMzs47vQuBWSQOAh0gLRkg6EDgZ+FnWgTIVjEgPyJ0E5J8MvDZwNfCfxpb5k3SUpCmS5kt6TtJ2DT1f0hhJ8yS9J+kUFaz3kjRE0r2S5kr6TNLfJK3cmLhs2auZ9TGLPprsQhFmZmZm1ioi4u8kZ0TtDvydZNvRH0gO3j05Im7OOlbWanuXAm8B2+YF8SRJCfOPSKtiZCHpcOB64BbgIGAW8KiktUv0X5lkii2AQ0gSuAtIssRcn+WAp4FVgO+SbArbBbg9a1zWOqonjQWgcsNvlDkSMzMzM+ssIuL/gLWADYEdgU2BVSPi2saMk/Wcp22AgyPis4IgZkoaBdyaZZB0tuhc4IaIOCdtewyYTFJl4/gitx2Txrl/RFQDD0nqAZwm6cqIqCGp8V4BfDO3hFDSHOBaSatGxMcZf09bxqomjaXH6hvQtf8q5Q7FzMzMzDoBSU8CtwF3RsTk5oyVdeZpAcksUzErAHUZx1kXGATcn2tIk5/RwF4l7hkOjEkTp5x7geX56rCsA4C/5++9iogHImKgE6e2Y9Fn71Lz2TQXijAzMzOz1vQ5cBnwsaQHJR0qqbIpA2VNnh4ELpC0fX5julfpAvKSoQasn76/VdA+FVgnv+56wT3F+gOsL6k7sAHwjqSrJM2UVC3ptnQ5n7URVZPGgiqo3GDHcodiZmZmZp1ERHwbWJnk3KiFwI3AJ5L+IelbkrplHStr8vRr4FPgaUkzJL0h6QvgGZJM7lcZx+mXvhdW55ubxlIsA+xXon/u2nIkZ0z9lqSIxXeAY0kqAd5WLAhJR0saL2n84sWLM4ZuzRERVE96ip6DhtKl0jmtmZmZmbWeiKiOiH9ExEEkidRPSLYG3QlkXqmWac9TurdpGLAvsB3JkrnZwDjggYjImoHkKuQVO2gXii//yx3CW0wdkMsU5wAH5GJJ9zzdKWnriHix4Pe5gbRyYGVlZamxrQUtmv4mi2d9TP/tvlPuUMzMzMysk0pnmXYBvklSOKKOpPBcJlkLRhARtcB96QtJXYH+jUicIEm4APoCn+S19yEJvKrEPX0L2vrmXZuX/jymIJbH0vdNgSWSJ2t9VROfgi5d6b1+vVXpzczMzMxaVJow7QkcDOxPkkuMBc4A7oqIWVnHynrOUw9JF0g6LP28Pckyvk8lPSlpxYzPy53eO6SgfQgwOSKKzQJNKdGf9J5ZJEsHuxf0yc1IeWapzKKuluo3nqbXkK2o6Nmn3OGYmZmZWefyOckE0EYklb/XiojdIuJPjUmcIPuepwtJSonnEpK/Ah+QHDa1KnBJxnGmAO8DI3MNaSY4AhhT4p4xwPCCihgjgS+ACennx4B9JPXO6zMifR+XMTZbRha8/zq1VTOp3NBV9szMzMys1V0GbBARwyLi8oiY3tSBsi7bOxg4MSL+ku59GgJ8NyLukFRNckJvgyIi0nOhrpE0E3iWpLjDiqQH7UpaB1gpIp5Pb7sOOI7kfKeLgaHAacCpEbEo7XMeyRTcQ5IuAgYCFwH/iIg3Mv6OtoxUT3wKde9Fr3WHNdzZzMzMzKyZJC0PzIqIOuDqvLaiImJGlnGzJk8rAhPTn/cFaoCH088zgJ4ZxyEirpPUCziBZDZrArBnROTKj59JUkZQaf/pkoYDVwJ3keyVOj0iLskbc5KknYH/B9xNUo3vzyRJlpVR1NZQ/eY4eq+7DRXdMn9NzMzMzMya4zOSQncvkizba2grT7Ejk5aSNXl6G9hB0vPAIcAzeQfSfhd4M+M4AETEpcClJa4dARxR0DYe2KGBMV8Gdm9MHLbszX/nP9QtmEelD8Y1MzMzs9bzI5IcBpKtRi0ia/J0MXATcCpJdYpfAUh6DhgGfK+lArKOpWriWCp69aPn4K+XOxQzMzMz6yQi4v/yPr4D/Cci5hX2kzSA5HzYTDIVjEgfviNwPvCNiBidXnoE2C0i7sz6QOs86hYtYP5bz9P7a9ujLpmr4puZmZmZtaQngA1LXNuKpBheJpn+RivpNuCP+fuMACLinKwPss5n/lsvEDULXWWvBQ0+dXTDnYqYNmpEw53MzMzMOghJdwHr5z4Ct0maX6TrmsC0rONmnQ4YAdyYdVAzgKpJT9Glzwr0WGvjcodiZmZmZp3L5cBP0p83ASaTFJHIVwv8C/hj1kGzJk8PAsdImhARM7MObm1HU2csmqp2wTzmT/0PfbfcFynrcWJmZmZmZs0XEc+SHIuEJIDz8qp7N1nW5Kk3yezTAZI+Az5dOr4Y2txgrOOo+t8TULeYyo12KXcoZmZmZtaJRUS91fYkbR0RL2YZK2vyNAu4NWNf6+QignkTHqb7quvRY9V1yx2OmZmZmXViktYArgB2BnqQniebvvckKaLXcuc8NZStmeVb+OFEaj5/j+X3Or7coZiZmZmZXUVyHuzNJBXE5wPjgG8CmwLfzjpQ5vrRSjaubAQMoEiJ84gYm3Us69jmvfIw6t6byg2/Ue5QzMzMzMx2BU6NiOsl/QI4KCJOkXQa8BBwAPDPLANlLVW+HXA3sApfTXPlCzJOdVnHVls9m6rJz9B36F5UdO9Z7nDMzMzMzHoD/0t/ngR8HSAi6iRdB1yddaCsM09Xkex7OoakDnpd1gdY5zLvv2OgdjF9Nt+r3KGYmZmZmQG8CwwBngbeAAZIWjsi3gGqgRWzDpQ1edoE+HZEtG69a2tXIuqY9+rD9FhzI7qvNLjc4ZiZmZmZAfwDuFQSEfF/kv4LXCbpSuC3JGdAZZL1AJ53Saa7zEpa8O5rLJ45nT6b713uUMzMzMzMcs4jSaByS6N+DnwDeBzYEvh11oGyzjydBVwgaVpEvNSIQK0TmffKQ1T06kfl13YodyhmZmZmZgBExGLg2LzP4yStDWwAvBERc7KOVTJ5kjSXpBBETiXwvKRaYMHSMUX/rA+1jmfx3C+onvI8/YaNRF27lzscMzMzM7OS0oQp08G4+eqbebqUJZMns5Lm/fcxiDr6DN2z3KGYmZmZWSdXZCKoXhHRL0u/kslTRJyd9WHWuUVdLfMmPErPQZvTbfk1yh2OmZmZmdkymQhqzCG5KwDbAD346qwnkRSS2C4iftHSwVn7MH/qy9TO/Yzldv9JuUMxMzMzM1tmE0FZD8k9ALgV6MlXGZzyfn6z5UOz9mLehIfpUrkcvdfdptyhmJmZmZktQdLhDfWJiL9mGasx1fb+Q1Kl4hiS2acLgb2BC4ATM45jHczi2Z8y/+3x9N/uENQl80SmmZmZmVlrublEewALgXlAiyZPGwCHRMQESY8Dp0XEJGCSpOWAM4BHMo5lHcjcVx8FiT6bu1CEmZmZmbVJyxVp60Ny1tPvgcOyDpQ1eaoB5qY/vwl8TVK3iKgBxgDe79QJRe1i5r32KL2GbEnXfiuXOxwzMzMzs6VExOwizbOBv0vqDVwJbJVlrIqMz/wPcGD68ySS/U47pZ8HZhzDOpjqKc9TVzWLPl/fp9yhmJmZmZk1xbvAxlk7Z515uhAYLWnliPiupDuA2yQ9AuwPPNb4OK29mzfhYbr0W4lea29R7lDMzMzMzIqStHyR5gpgdeB04O2sY2WaeYqIR4Ht+Wpf09HAQ8DWwAMkRSQyk3SUpCmS5kt6TtJ2DfTfRNIYSfMkvSfpFEmqp//NkqY1JiZrnJoZH7Lg3VfpO3QvVNGl3OGYmZmZmZXyOfBZwesT4BWSo5hOyTpQyZknSc8B/wYeB56NiBeBFwEiohr4UVMiT0sFXg+cC7wEHAc8KmloRLxTpP/KaRyvA4cAW5BU+KsFLinS/5vAD0mm4GwZmTfhEajoQuVme5Q7FDMzMzOz+vyIpQ/MDWAO8ESJPVFF1bdsbybJjNLpwAJJz5IUhxgDjI+IRp/Ym84WnQvcEBHnpG2PAZNJyp0fX+S2Y9I490+Ttock9QBOk3RlWrQiN34f4Abgw8bGZtnF4kXM+++/6b3etnTtU2wW1MzMzMysbYiIm1tqrJLJU0TskyY7G5MUh9ge+ClJOb/Zkp4kTabSsuVZrAsMAu7Pe06NpNHAXiXuGZ4+ozqv7V6S8ujDgHF57aOAqcBrwMiMMVkjVU1+lroFc+mz+d7lDsXMzMzMrEGSvkOyRG9AkcsRET/OMk69e54i8XpE/CEifhARawNrkiRR7wM/ACZIyjrTs376/lZB+1RgHUnFNs+sX6J//nhI2hE4kmQ/li1D8155mK7LrU7PQZuVOxQzMzMza6eaUAdhe0lPSJol6SNJf5W0SobnXAn8Hfg28PUSr0yylirPPbgrMIRkBmkdYDWgC/BxxiH6pe9zC9rnprFUlrinWP8vx5PUE7gJODciChOtpUg6WtJ4SeMXL16cMXQDWPTZNBZ+OJG+m++F1Kivj5mZmZkZsEQdhFuAg4BZJHUQ1i7Rf0OSVW9zge8BvwJ2SO/p1sDjDgUujYiBEfH1Iq/MpaMbLFUuaSNgj/S1M0mC8w5JEYebSZbUzcj4vFyFvML9Urn2uhL3lNpflet/NlANXJoliIi4gWRvFJWVlY3eu9WZzZvwMHTpRuUmu5c7FDMzMzNrh5pYB+FYYDpwUK7mgaQpJAXt9iCpBF5KLS10tFJ91fZuJtlvtBrwBfAEcBLwWERMa+LzcpUs+pKUB8zpQ5IIVZW4p29BW+7zbElbkvwhfyONuytpMpb+XNuU4ha2tLpF85n3+uNUbrAjXXr3L3c4ZmZmZtY+NaUOwv+AifnF4kiSLYCis1V5rgOOl/RMQR2FRqtv5ulwkqTpd8A1ETGrOQ9KTUnfh7DkPqYhwOQSSc6U9DoF/SH5A9sP6A48X+TeGpJ9UDc3MV7LUzVpLLFovgtFmJmZmVlzNFgHISJq8y9ExHVFxtkvfX+jgeddDowHPpQ0mWTFWsHwkWlZVX2bVk4jOTjqNOBTSeMknStpp3RGpymmkBSaGJlrSNcojiBZw1jMGGC4pPz9UCNJErsJJMvvhhW8/k4yrTeM5BBfawHzJjxMtxUH0WONDcsdipmZmZm1XV1z9QXSV2FBt6bUQViCpLVIznwdT3IubX1uIqnXMIkkR5hd8JrT0PNy6itVfhFwUXqm0k7A7sA+wG+B+ZLGkqwd/HdEvJ7lYRERkkYB10iaCTxLsn5xRZKMEEnrACtFRG4m6TqSg3QfknQxMJQkoTs1IhYBH6WvL0n6FFgUEeOzxGUNWzh9Cos+fovl9/gZyTJVMzMzM7OiFkfEVvVcb0odhK86JYnTGJJE67sZtujsAxwbEdc30K9BDZZLi4iFEfHviDgt/UNYmeSU3ndJlsRNkPRRvYMsOd51wK9JypzfRVJrfc+IyJUfPxN4Lq//dJK9V13T/kcDp0fEJVmfac03b8LDqFsPKjfetdyhmJmZmVn7ll8HIV99dRAAkLQJyTmv/YA9IuLtDM+bSVLwrtkaW6pcwFrACkBPkmwxSCpYZBYRuVKBvSNi+4jIT5aOiAgV9B8fETtERM+IGJTOitU3/i8jYnBjYrLS6hZWUTXpKSo33JmKHg3OopqZmZmZ1Se/DkK++uogIGkbYCxJ7rFTRLyW8XlXAGdKWrkJsS6h3r1LklYAtgW2S1/DSNYgfgw8BVwLPJHlbCVrv6r+9wRRs5A+X9+n3KGYmZmZWfuXXwfhX7BEHYTRxW6QNBh4mKRi9+4RkXnlG0k+synwkaT3WXqvVUTE0CwD1Veq/E2SjVUCPgWeBH5DkixNLnWfdSwRwdxXHqb7quvRY9V1yx2OmZmZmbVzTayDcCXJUr1jgIGSBuYN+W661aeUecA9LRF7fTNPr5JMcT0ZERNb4mHW/iz8cBI1n7/L8nsVO6vMzMzMzKzxIuI6Sb2AE0jObJ3A0nUQfkiyc6gbSdGHLsBtRYb7NUnlvVLPOrKl4q6v2t7BLfUQa7/mvjIade9N5YbfKHcoZmZmZtaBRMSlwKUlrh0BHJH+XAN0a+pzJDX4F9mIGJtlrKae12SdwKJPp1I9cSz9ho2konvPcodjZmZmZtYUT5IUuSs8bye/MEWXLAM5ebKiIoIZY/5ERa++9Nv+O+UOx8zMzMysqb5epK0P8A3g58BBWQdy8mRFzX/rBRa+9xrL7/EzuvTsU+5wzMzMzMyaJCJeLXHpWUkLgP8HZDrMtFHnPFnnELU1zHziJrqtsBZ9Nt+73OGYmZmZmS0rrwDbZO3s5MmWMvflB1k8czrL7fYTVJFp+aeZmZmZWbsiqR9JifT6ypwvwcv2bAm11bOZNe4f9ByyJb2GbFnucMzMzMzMmkXSXJYsDgHJJFIvkiISP846lpMnW8KsZ24jFs1n+V1/Uu5QrAUNPrXoYd0NmjZqRAtHYmZmZtbqLmXp5CmAOcDDETE560BOnuxLiz6bxrwJD9P36/vQbcW1yh2OmZmZmVmTSOodEdUAEXF2A32/HhGvZBnXe54MSEqTz3z8Jiq696L/joeWOxwzMzMzs+Z4VFLvhjpJOg14LuugTp4MgAVTx7Ng2iv03+FQuvTqV+5wzMzMzMyaYwvgX5KKnrkjaaCkp4ALgFKlzJfi5MmI2sXMePwmui6/Bn232Kfc4ZiZmZmZNdc+wGYkCVTf/AuSDiNJmLYBTge2yzqokydj7oSHWTzjA5bb9UeoS7dyh2NmZmZm1iwR8RSwB7AB8JikfpIGSPoH8FfgbWDLiLgwIuqyjuuCEZ1c7fy5zH7mVnoO2pxe62xd7nDMzMzMzFpERLwgaTfgUWAssDywCnAWcGFE1DZ2TCdPndzsZ2+jbmE1y+3+EySVOxwzMzMzsxYTERMk7QL8myRx2j2dlWoSL9vrxGq+eJ+5rzxEn6HfpPtKg8sdjpmZmZlZi4uIScCOwPvAZZKWb+pYnnnqxGY+8WfUtQcDdjys3KGYmZmZmbUYSVcVaZ4AfAt4WtKYvPaIiBOyjOvkqZOa/85/mP/2SwzY5Ui6VA4odzhmZmZmZi1pvxLt7wK9C64H4OTJiou6WmY+/ie6DliVflvuX+5wzMzMzMxaVESsvSzG9Z6nTmjeq49S8/l7SWnyri5NbmZmZmaWhZOnTqZuwTxmPX0LPdbahF7rZT4PzMzMzMys0ytL8iTpKElTJM2X9Jykev8WL2kTSWMkzZP0nqRTVFBXW9K+kl6QNFfSNElXFZ4mbDB73O3UzZ/L8rsf5dLkZmZmZmaN0OrJk6TDgeuBW4CDgFnAo5KKrkuUtDJJXfYADgFuAC4ATs7rsytwP/C/dMwLgO8Cty+r36M9qpn5EXNefoDKTYfTfZV1yh2OmZmZmVm70qoFI9LZonOBGyLinLTtMWAycCJwfJHbjiGJc/+IqAYektQDOE3SlRFRA/wKeDYifpT3rFnAHZI2ioiJy/L3ai+S0uTdGPCNH5Q7FDMzMzOzdqe1Z57WBQaRzBIBkCY/o4G9StwzHBiTJk459wLLA8PSz88D1xbcNzl9XyaVNtqbBe++xvwpz9N/24Pp2qfJ54KZmZmZmXVarV2qfP30/a2C9qnAOpK6RERtkXueLNI/d21cRJxX5Fm52u1vNDHWNmfwqaObdF/U1TLj8Rvp0m9l+g0b2bJBmZmZmZl1Eq0989QvfZ9b0D43jaWyxD3F+uePtwRJQ4HTgHsi4u0i14+WNF7S+MWLF2eNvV2KCGY9fQs1n77Dcrscibp2L3dIZmZmZmbtUmsnT7nyblGiva7EPYX9c5bqL2kz4F/Ah8DRxW6KiBsiYquI2Kpr1457TnBEMPvpW5jz/J302eyb9N5gx3KHZGZmZmbWbrV28jQ7fS8sId6HJBGqKnFPYf++ede+JGkXYCxJBb/hEfFF00Nt/2Y/cxuzn7udyk33YPm9jnVpcjMzMzOzZmjt5GlK+j6koH0IMDkiis0wTSnRH74qCoGk/YFHgHeAnSLi/eaH237NeuZWZo/7O5WbDmeFvY9D8nnIZmZmZmbNUY7k6X1gZK5BUjdgBDCmxD1jgOGS8vdDjQS+ACakY2wN3AG8BOwcEZ+2cNztyqxnbmP2s3+ncpPhrLD38U6czMzMzMxaQKtu+ImIkDQKuEbSTOBZ4FhgReByAEnrACtFxPPpbdcBx5Gc73QxkCsGcWpELEr73AjUAL8HNipYnvZmRMxYtr9Z2zHr2b8z+9nbqNxkd884mZmZmZm1oFavlhAR10nqBZxAcjDuBGDPiMiVHz8T+CFpEYmImC5pOHAlcBfwCXB6RFwCIGkwsFl670NFHnlwel+HN2vcP5j9zK1UbrJbMuNU0aXcIZmZmZmZdRgqvs2o86isrIyqqmJ1Ktqe+s55mj3udmY9/TcqN96VFfb5pRMnK7tpo0aUOwQzMzMrA0nVEVHsCKJ2z2u6OoDZz93hxMnMzMzMbBlz8tTOzX7uDmaN/SuVG+3ixMnMzMzMbBly8tSOzX7+LmaN/Su9N9qZFUac6MTJzMzMzGwZcvLUTs1+4S5mPXUzvTfcmRVHnOTEyczMzMxsGXPy1A7NfuFuZj15M703/AYr7uvEyczMzMysNTh5amdmv3APs578S5o4nezEyczMzMyslbT6OU/WNAsWLEgOwH3mVnpvsJMTJzMzMzOzVuaZpzbuww8/5IwzzmCttdb6KnHa71dOnMzMzMzMWplnntqgiOC5557jqquu4u6776a2tpb999+f53ptTc+BmyGp3CGamZmZmXU6nnlqQxYuXMjf/vY3hg0bxg477MAjjzzCCSecwFtvvcW9995Lr0FDnTiZmZmZmZWJk6c2YPr06fzud79j4MCBHH744VRVVXHdddfxwQcfcMkllzBkyJByh2hmZmZm1qIkHSVpiqT5kp6TtF0D/TeRNEbSPEnvSTpFrTyz4GV7ZfTiiy9y1VVXcccdd1BTU8OIESM44YQTGD58uGeYzMzMzKzDknQ4cD1wLvAScBzwqKShEfFOkf4rA/8GXgcOAbYALgBqgUtaK24nT60oIvj0008ZM2YMV111FS+88AJ9+/blF7/4BccccwzrrbdeuUM0MzMzM1um0tmic4EbIuKctO0xYDJwInB8kduOIcld9o+IauAhST2A0yRdGRE1rRG7k6cWVFdXx8cff8y0adN49913l3ifNm0a7733HvPnzwdgvfXW46qrruKII46gb9++ZY7czMzMzKzVrAsMAu7PNUREjaTRwF4l7hkOjEkTp5x7gTOAYcC4ZRPqkpw8NUFVVRX33HPPUknSe++9x6JFi5bou+KKKzJo0CA22WQTRowYweDBg9l4443ZZZddqKjwljMzMzMz63TWT9/fKmifCqwjqUtE1Ba558ki/XPXnDy1VTU1NRx++OEArLrqqgwePJgtt9ySgw46iEGDBjFo0CAGDx7MoEGDqKysLHO0ZuUx+NTRTbpv2qgRLRyJmZmZtTH90ve5Be1zSQraVQJzitxTrH/+eMuck6cmGDBgAJMnT2bgwIH07Nmz3OGYmZmZmbUlXSWNz/t8Q0TckPc5VxktCu7LtdcVGVNF+ucU679MOHlqovXXX7/hTmZmZmZmnc/iiNiqnuuz0/e+wCd57X1IEqGqEvcUFgrom3etVXjTjZmZmZmZtaYp6XvhYaZDgMkRUWyGaUqJ/pBU6WsVnnkyszbFe6XMzMw6vCnA+8BI4F8AkroBI4BSfxEYA/xUUmVE5GamRgJfABOWYaxLcPJkZmZmZmatJiJC0ijgGkkzgWeBY4EVgcsBJK0DrBQRz6e3XUdykO5Dki4GhgKnAadGxKLCZywrXrZnZmZmZmatKiKuA34N/AC4CxgA7BkRufLjZwLP5fWfTnLWU9e0/9HA6RFxSSuGjYovKew8Kisro6qq2J60Zaepy5LMrDQv2zMzM2sbJFVHRIc8r8czT2ZmZmZmZhmUJXmSdJSkKZLmS3pO0nYN9N9E0hhJ8yS9J+kUSSros5OkFyRVp2P/aNn+FmZmZmZm1pm0evIk6XDgeuAW4CBgFvCopLVL9F8Z+DfJoViHADcAFwAn5/XZEHgEeAc4EHgAuEnSt5fZL2JmZmZmZp1Kq1bbS2eLziU5ZfictO0xktrsJwLHF7ntGJI494+IapIKGz2A0yRdGRE1wKnANOB7aV34RyStBJxFsqHMzMzMzMysWVp75mldYBBwf64hTX5GA3uVuGc4MCZNnHLuBZYHhuX1ebDgQK17gU0lrd4ikZuZmZmZWafW2snT+un7WwXtU4F1JHUpcU+x/gDrS6oEVq+vTxNjNTMzMzMz+1JrH5LbL32fW9A+lySRqwTmFLmnWP/ctfrGzH/mlyQdTVIbHiAkzW8w8uK6AoubeK91Xv7eLAO6qNwRtAp/d6yp/N2xpvJ3x5qiV7kDWFZaO3nKVcgrPFwq115X4p5Sh1HVNWXMiLiBpPBEs0gaHxFbNXcc61z8vbGm8nfHmsrfHWsqf3esKSSNL3cMy0prL9ubnb73LWjvQ5LkFDutdnaR/n3zrs0paMsfM/+ZZmZmZmZmTdbaydOU9H1IQfsQYHJBwYf8e4r1J71nHjC9nj5vNjFWMzMzMzOzL5UjeXofGJlrkNQNGAGMKXHPGGB4WhgiZyTwBTAhr89+BQUnRgKvR8QnLRB3Kc1e+medkr831lT+7lhT+btjTeXvjjVFh/3eqPhkzzJ8oPQL4BrgQuBZ4FhgR2DziJgqaR1gpYh4Pu2/GjAJeBW4GBgKnAOcGhGXpH2GAi8BDwI3kpQuPwk4JCLubMVfz8zMzMzMOqhWT54AJJ0MnACsSDJ7dHJEPJdeuxn4YUQor/9WwJXAlsAnwHURcVHBmHsCFwEbAO8Bv4+Im5f172JmZmZmZp1DWZInMzMzMzOz9qa19zx1CJKOkjRF0nxJz0nartwxWdslaX9JcwvaJOl0Se9Jqpb0mKQNyhWjtR2Sukg6SdIkSVWSJko6VpLS6/7uWFGSuks6X9K76XfncUlb5F33d8fqJalH+t+em/Pa/L2xoiStICmKvO5Kr3fI746Tp0aSdDhwPXALcBAwC3hU0trljMvaJknbk3xXVHDpLOAM4BLgu0B/YIyk/q0bobVBZwK/J/ne7A/cAVwB/Dq97u+OlXI5cDwwCjgAqAaekDQove7vjjXkdyTbH/L5e2OlDE3f9wS2y3udlrZ3zO9ORPiV8UXyF+BpwB/y2roBU4Gryh2fX23nBfQAfgMsBGYA8/Ku9QXmAqfktS1HcmbZSeWO3a+yfm8q0u/BeQXt1wKf+rvjV6kXyV9KFuV/D4BeJAnUGf7u+NXQC/g6MA/4DLg5bfP3xq+SL+CXwMclrnXY745nnhpnXWAQcH+uISJqgNHAXuUKytqkvUn+5eXXwNUF17YlOcQ5/3s0E3gKf486u/7AX4F7CtonAysBu+HvjhVXBWwD/CWvrQYIkn/M8X93rCRJXYE/k1Q1/jDvkr83Vp/NgNdKXOuw3x0nT42zfvr+VkH7VGCdgnOmrHN7CVg7Iq4i+ctLvtz36O2C9ql516wTioiZEXFsRLxScGk/4ANgzfSzvzu2hIhYHBGvRMRMSRXpUvI/k/z35xb83x2r3ylAd5JjZPL5e2P12QzoLWmcpAWSPpD0m3SPbof97nQtdwDtTL/0fW5B+1ySRLSSZDrSOrmI+LCey/2AhRGxqKB9Ll99x8wAkPQTkrPrjsffHcvmTODs9OezImKypAPxd8eKSDfwnw7sHhGL0to0Of5vjhUlqQLYiGTW+1ckxwTtQ5KA9ySZ+e6Q3x0nT42T+y9K4UxCrr2uFWOx9kss/R3Ktfs7ZF+S9H2SAjV3kRwufhr+7ljD/gk8CewKnCWpOzAff3esQPoX4JuAmyI9b7OwC/7eWHEC9gXei4jciqwnJPUhmcm8gA763XHy1Diz0/e+JIf15vQh+SJUtXpE1h7NBnpI6pbumcvpw1ffMevkJJ0IXEqyXvz7ERGS/N2xBkVEbg/CU5L6kuy9PAV/d2xpx5Hs5d433feUo/Sz/5tjRUVELfB4kUuPAD8j+Ttxh/zueM9T40xJ34cUtA8BJkdaSsSsAVNI/uWlsLz9EJLCANbJSfo9cBnwN+Dbecse/N2xoiStKunINFnK9wpJwYiZ+LtjSzsAWIOkKmxN+hoKHJ732d8bW4qk1SUdLWmlgku90vcO+98cJ0+NMwV4HxiZa5DUDRgBjClTTNb+jAMWsOT3aDlgZ/w96vQknUCyPO9K4IiIWJx32d8dK2UASYGIbxe0f5OkzP29+LtjS/spMKzg9SbwYPrzP/D3xorrAfwROKyg/SCS79A9dNDvjpftNUK6bGYUcI2kmcCzwLHAiiSHE5o1KCLmSboaOF9SHcl/ZE4nKTbyp7IGZ2UlaTXgIuC/JH9p2aZg8/Z4ktL3/u7YEiLiDUl3A5eme5ymAgcCPwB+FBFz/N8dKxQRS80ASJoPfBER49PP/t7YUiLiHUl/B85LvxuTgINJkqeRHfnvOk6eGikirpPUCzgBOBGYAOwZEVPLGpi1N78l2Sf3K5L1v+OAH0ZEu14HbM22J8m/5m0KFNu8vRL+7lhphwO/I5m5XA2YCBwcEXel1/3dsabw98ZK+TFJdc9fkvw3ZxJwUETkznbqkN8deZuOmZmZmZlZw7znyczMzMzMLAMnT2ZmZmZmZhk4eTIzMzMzM8vAyZOZmZmZmVkGTp7MzMzMzMwycPJkZmZmZmaWgZMnM7M2QtIESSFpWJmef7akeQ30uVnS640cd5f099qqeRGWjCfqeV3fAs8ISb9qiXjzxmz0n6OZmZWfD8k1M2sDJG0KbEZysOlPgJfKG1G7MhX4folrn7TA+NsB77bAOPnOAypbeEwzM1vGnDyZmbUNPwReBf4KnCPppIioKnNM7cX8iHh+WQ2+LMaOiLdbekwzM1v2vGzPzKzMJHUBDgUeAW4nmZE4JO/6EZI+l7R7urRvoaSJkvbP6zOtxLK1aXl99pT0lKS5khakYx1YJJ7vSJqc9hkvaftG/j77SHpF0nxJ44C1i/TZUtIYSdWSPpN0taTeedeflHSDpEclzZF0SWNiKPK83NLBn0qaLul9SYPTa9+T9N/0931b0nEF9y6xbE/SrpJeTH+//6V/roslHZFePzv9c/uepDfTcV/K/3MsXLaX/pmNT/88PpX0Z0nLN+J6V0nnSnov7/9uuzfnz8zMzJbm5MnMrPz2AFYDbo2Ij4AxJEv38vUF/gxcC+wLfA7cnvcX6ANIlpflXj9P228GkLQ18BDwOvAt4DtANXCbpJXyntMbuAD4HXAwSSJ3j6RMKxUkbQvcD0xOY/o38IeCPhsBY4EgSRJPSeO5o2C4I0mW5H2bJKms77ldi72KdD0TOBr4bURMk/RD4DbgKWB/4P+AyyX9usRzNgUeJlkOeCDJn+8dQJeCrusD5wJnAwcBvYA7i8UkaRBwD/AssA9wMrAfyf+tG7yeujFtvxIYCbwBPNzYxNfMzOrnZXtmZuV3OPBKRORmIv4K/E3ShhExKW3rDvw6Iu4AkPQJyTK/XYG7I+KV3GCSVgD+DjxK8hd4gI2BeyLimLx+7wH/AbYBHsw1A4fllqpJ6gbcDWwEvJbhd/kN8CbwvYgI4BFJA4D82ZwzSZKPERGxMH3OFGCspG9ExNi031zg+IioaeCZGwNF+6R/hm/kNV0REQ+k1yqA35Mkrcem1/8lKYAzJV1XZOnkqcAHwAERsZgkQakDCmfG+gLDI+LF9FldgPuAocDLBX23BnoAoyJietp/HjAoy3VJGwBHAEdFxJ/Sex6RtBpwPrBbsT8bMzNrPM88mZmVkaS+JDNB90gakCYaj5PMChXOPuXvvfkgfV+i6ED6l/TbSZKg70dEHUBE/CUiDpZUKWkrSYcCuUSqR94QtcCLeZ+npe8DMv5KOwCPpIlTzt0FfXYF/gXU5s0QPQfMAfKXmr2VIXECeBsYVuI1raDvxLyf1wdWB0YXzFY9TJL8bF3kWbsAD6aJU86dRfotBsbnfS76f6/Uy8BC4EVJF0vaBbg/Iq7IeH2X9P2hgt/jIWBHSd2LPNPMzJrAyZOZWXkdTLJU7jxgZvr6MG07vOAvvtV5P9el74X/Hb8Y2Ak4OCK+yDWmSdMtwCySROW3QM/c5bz7F+QSrgaeU8pyJEsK831c8HkF4Kcks0X5r34kyxdzPs34zAURMb7Ea0FB3/wxV0jfbyuII1fpMD+WnBWBzwrailX0W5j1zzEippIkja+SzNA9AXwg6YAs1/N+jw8Lfo9LgG5pzGZm1gK8bM/MrLwOJ5npOaWgfWPgGpJZqUwkfR84Efh5RBSWOr8a+CbJnpmxEbEw3XtUqsR3U30BrFzQtkLB59kkS9j+wNIKE69laXb6fgxLzrblvFOk7SNgpYK2ws+NFhHPAvumRTN2J1n+eKekgRHxUX3X098jSGb9is3UteafqZlZh+aZJzOzMkn/4vsN4G8R8WT+C7ieZMamcOleqbG2ICka8LeIKHYw7HYky+key+0zAvbK3d6c36PAE8B+BYUR9ino8wywAfByboYIeB8YBWzSgrE05A2SZG/N/NkqkmTvPKB/kXvGAiPS/VI5mRPcYiT9RNJUSd0iojrdk3UGSRGKNRq6TvLnKaBvwe8xnCSZXlz8yWZm1lieeTIzK5/DSWYMCvcEERG1km4nWaY1rr5B0op7/yRZknatpG1YMiF6hWQp2v5pdbn3SIoI5CrK9ablXECy1+deSdeSHPx7bEGf80h+pzsk/Zlk+eCZwFpprI3VK63yV8yCiJhQ7EJELJZ0NnCZJEiqHK4NXAhMofjM0yhgAnC3pD+S7Js6L71WV6R/FmNJZgbvlHQdSXGQM9LnTyCZWSp5PSJqJN0N3JL+PpNI9kGdAfy/guWDZmbWDE6ezMzK5zDg2VwFtSJuBU4AftTAOJsBA9Ofix3oujZJGetewBVp2ySSUtuXk8xK/V/mqOsREf+TtAfJfpt7SEqWHwPcktfnZUm7kSRadwMLSMpw/yAiPmzCY4eQ7OMq5m1g3XrivUZSNXASyZ/RFyQFIE4vKHqR6z9J0n7A/yNZejiFZHbnJmBeE2InIt5MxzwXuCttfoKk4EcN0NB1SJZfngucRrJs8l2SyoDNOh/LzMyWpCL/v8HMzMyKkDQcmBsRL+S1fZOkLPzQiMhSzt3MzNopzzyZmZllty3wa0m/IplVG0Qy4zPWiZOZWcfnmSczM7OM0kIYvwMOJSnWMINkv9lpETGnnLGZmdmy5+TJzMzMzMwsA5cqNzMzMzMzy8DJk5mZmZmZWQZOnszMzMzMzDJw8mRmZmZmZpaBkyczMzMzM7MMnDyZmZmZmZll4OTJzMzMzMwsAydPZmZmZmZmGTh5MjMzMzMzy8DJk5mZmZmZWQZOnszMzMzMzDJw8mRmZmZmZpaBkyczM+tQJPWVNFXSzwraKyT9VNKrkuZJelfSTZJWKVesZmbWvjh5MjOzDkPSCsDDwNpFLp8GXAf8CxgJnAN8E3hOUt/WitHMzNovJ09mZtaiJL0i6eEi7VdIqpLU4v+/R4mDgQnABkWudwVOBf4YEb+OiH9HxJ+BQ0gSre+2dExmZtbxOHkyM7MWkyYpGwKvFrk8FHg9IupK3Bv1vRp49CDg78CjJLNJhQYANwO3FrRPTN/XaGB8MzMzupY7ADMz61C+BvQgmQEqtBlwdz33bteM534OrB8RUyUNLrwYEZ8DxxW578D0/fVmPNvMzDoJJ09mZtaSNk3fl5h5krQWsHxhe76IeL6pD42IecC8xtwj6WvAJcB/gXub+mwzM+s8nDyZmVlL2gyYD7xZ0D40fS+ZPKVL/kqKiMXNC22JZ21OUlhiIXBAS45tZmYdl/c8mZlZS9qMZF9TbUH75kAAr9Vzb00DrxYh6QDgGZIkb+eIeLulxjYzs47NM09mZtaSNgOeLNK+FzAtIubUc++wZRJRHkknkSzVewnYLyI+XdbPNDOzjsPJk5mZtQhJ/YG1gFUK2kcAOwD31Xd/RIxfdtFBemjupcD9wHcjYv6yfJ6ZmXU8Tp7MzKylbJa+7yDpz8ArwCYkB9ICDJG0f0Tc39qBSVoTuAL4gGTmaaik/C4fRsT7rR2XmZm1L97zZGZmLSWXPB0MbAtcnLbtRbKUb02gT1kig/1JSqivCYwFnit4HVOmuMzMrB1RREPnDpqZmTVM0vXAvhGxZrljMTMzWxY882RmZi1lM2BiuYMwMzNbVpw8mZlZsynZQLQJ8L9yx2JmZrasOHkyM7OWMBjoi2eezMysA/OeJzMzMzMzsww6fanyioqK6NWrV7nDMDMzMzPrEKqrqyMiOuQKt06fPPXq1Yuqqqpyh2FmZmZm1iFI6rCHkHfIjNDMzMzMzKylOXkyMzMzMzPLwMmTmZmZmZlZBk6ezMzMzMzMMihL8iTpKElTJM2X9Jyk7TLe11fSu5K+XeTavpJekDRX0jRJV0nq2/LRm5mZmZlZZ9TqyZOkw4HrgVuAg4BZwKOS1m7gvr7AfcDAItd2Be4nOdn+IOAC4LvA7S0Zu5mZmZmZdV6tekiuJAHvAA9HxM/Ttm7AZODBiDi+xH07kyRcqwDLAQdHxF1510cD/SJip7y2g4E7gI0jouSJ95WVleFS5WZmZmZmLUNSdURUljuOZaG1Z57WBQaRzBIBEBE1wGhgr3ruuxf4bz19ngeuLWibnL7XO6NlZmZmZmblI2l/SXMz9NtE0hhJ8yS9J+mUdHKm1bT2Ibnrp+9vFbRPBdaR1CUiaovct1NEvC5pcLFBI+K8Is37pe9vNClSMzMzMzNbpiRtT7Kdp94kSNLKwL+B14FDgC1IturUApcs4zC/1NrJU7/0vTCznEsyC1YJzCm8KSJeb8xDJA0FTgPuiYi3i1w/GjgaoHv37o0Z2szMzMzMmklSD+AE4DygCmjoL+XHkOQu+0dENfBQOsZpkq5MV7Mtc629bC+XURZutMq11zX7AdJmwL+AD0kTpEIRcUNEbBURW3Xt2tr5o5mZmZlZp7c3yWTHr4GrM/QfDoxJE6ece4HlgWEtHl0JrZ05zE7f+wKf5LX3IUmcmlW5QdIuJH+InwDDI+KL5oxnZmbNt3jxYhYsWMDChQtZsGABNTU1LF68mNraWhYvXpzpletbV1f35Ssilvhc37WIKPoCGmzP/ZyTpa2hYkz1XW9OIafWLAJlZtZMLwFrR8QsSWdn6L8+8GRB29S8a+NaLrTSWjt5mpK+D2HJfU9DgMnRjP/qS9qfpLreJGDPiPi0yVGamXUydXV1zJs3j9mzZ3/5mjNnzhKf819VVVUsWLBgiVcuOSr8XFtbbCtrx5Xbu9zQHub6rjdn/3Mr7502Myumq6TxeZ9viIgb8jtExIeNHLMfxbf+5K61inIkT+8DI0mW1uVKlY8gqbjXJJK2JkmcXgJGRMRS+6bMOoLBpzbtfybTRo1o4UisPYgIZsyYwYcffsgHH3zAhx9++OXrgw8+YPr06cycOfPLRKmhf7+qqKigf//+9O/fnz59+tCrVy969OhBZWUlK6ywAj179qRHjx707Nnzy1exz926daNr166ZXl26dFni5y5dulBRUYEkKioqlnoVa8+1QZJYFL6KtRe25T7nZE2QzMw6I0mLI2Krlh6Wpbf+5DR7609WrZo8RURIGgVcI2km8CxwLLAicDmApHWAlSLi+UYMfSNQA/we2Kjg/5m9GREzWiJ+M7O2ZNGiRUycOJG33npriaQoP0lasGDBEvdIYuWVV2bNNddk4MCBbL755vTv359+/fp9mRgVvnLXKisrnSyYmVm5zCbZ+pOvb961VtHq1RIi4jpJvUiqa5wITCBZZpdbs3gm8EMaKFeYk5Yv3yz9+FCRLgcDdxVpNzNrN2bMmMGrr77KhAkTmDBhAq+++ioTJ06kpuar4kI9evRgjTXWYI011mDrrbf+8uc11liDNddckzXWWIPVVluNbt26lfE3MTMza5IpJFt98uU+T6aVlKXUXERcClxa4toRwBElrk2jIKkq1mZm1l7V1dXxzjvvLJEoTZgwgffff//LPqutthqbb745e++9N5tvvjkbbLABa6yxBiussIJnhszMrKMaA/xUUmVE5IrMjQS+IJmMaRWu021mVkYLFixgzJgxPProo7zyyiu8+uqrzJ2b7H/t0qULX/va19hpp53YfPPN2XzzzRk6dCgrr7xymaM2MzNbtops5bkOOI7kfKeLgdy5rqdGxKLWisvJk5lZK5sxYwajR4/mvvvu45FHHqGqqorKykq+/vWvc/jhh3+ZKG288cb06tWr3OGamZmVwxJbeSJiuqThwJUkW3I+AU6PiEtaMyh19jMhKisro6qqWcdLmbUaV9trv959913uu+8+7r33XsaOHUttbS2rr746+++/PyNHjmSXXXahR48e5Q7TzMys2SRVR0RlueNYFjzzZGa2DEQEr7766pcJ04QJEwDYaKONOOWUU/jWt77FVltt9WUJbTMzM2v7nDyZmbWQxYsX8/TTT3Pvvfdy33338e677yKJHXbYgYsvvphvfetbrLfeeuUO08zMzJrIyZOZWTPNnz+fG2+8kYsuuoiPPvqInj17sscee3DmmWey3377ucCDmZlZB+Hkycysiaqqqrj++uu5+OKL+eSTT9h55525+uqr2XPPPams7JBLvc3MzDo1J09mZo00d+5crrvuOi655BI+//xzdt99d26//XZ23nnncodmZmZmy5CTJ7NOwFX6Wsbs2bO55ppruOyyy5gxYwZ77bUXZ555Jttvv325QzMzM7NW4OTJzKwBs2bN4sorr+SKK65g1qxZ7Lvvvpx55plsvfXW5Q7NzMzMWpGTJzOzEmbMmMEVV1zBlVdeyZw5cxg5ciRnnHEGW265ZblDMzMzszJw8mRmVuCzzz7jsssu45prrmHevHl8+9vf5owzzmDo0KHlDs3MzMzKyMmTmVkqIrjqqqv47W9/y/z58/nOd77D6aefziabbFLu0MzMzKwNcPJkZgZ88cUXHHnkkTzwwAOMGDGCiy++mA033LDcYZmZmVkb4uTJzDq9p59+mkMPPZRPP/2UK6+8kuOOOw5J5Q7LzMzM2piKcgdgZlYutbW1nH/++eyyyy707NmTcePGcfzxxztxMjMzs6I882RmJTX1fCho+2dETZ8+ncMOO4zHH3+cQw89lD/84Q/069ev3GGZmZlZG+bkycw6nUcffZQf/OAHzJs3j5tuuokjjzzSs01mZmbWIC/bM7NOo6amhlNOOYW99tqLVVZZhfHjx/OjH/3IiZOZmZll4pknM+sUpk2bxve+9z2ef/55jj76aK644gp69epV7rDMzMysHXHyZGYd3j333MOPf/xj6urq+Mc//sF3vvOdcodkZmZm7ZCX7ZlZh7VgwQKOOeYYDjroINZdd11eeeUVJ05mZmbWZE6ezKxDmjx5Mttuuy3XXXcdJ510Es8++yxDhgwpd1hmZmbWjnnZnpl1OC+99BLDhw+nW7duPPjgg4wY0bbLppuZmVn74OTJzDqU1157jT333JMVVliBJ598koEDB5Y7JDMzM+sgvGzPzDqMyZMns8cee9C7d2/GjBnjxMnMzMxalJMnM+sQ3nnnHXbffXcAxowZw9prr13miMzMzKyj8bI9M2v3PvjgA3bffXeqq6t58skn+drXvlbukMzMzKwDcvJkZu3aJ598wvDhw/n8888ZM2YMm222WblDMjMzs3ZEUkVE1GXp62V7ZtZuzZgxgz322IP33nuP0aNHM2zYsHKHZGZmZm2MpKmShpa4tjXwadaxPPNkZu3SnDlz2GuvvZg8eTIPPvggO+20U7lDMjMzszZC0s+BXunHwcCRkt4r0nVHoEvWcZ08mVm7U1VVxYgRI3jllVe455572GOPPcodkpmZmbUtKwLnpD8HcHyRPnXALOCMrIN62Z6ZtSsLFizggAMOYNy4cdx6663st99+5Q7JzMzM2piIOC8iKiKiAhCwXe5z3qtrRKwYEddmHdczT2bWbtTU1HDIIYfw2GOPcfPNN3PIIYeUOyQzMzNr49IEqkU4eTKzdqG2tpYf/OAHPPDAA1x77bX88Ic/LHdIZmZm1kZJuh84OSKmpD/XJyLiW1nGdfJkZm1eXV0dP/nJT7j99tu5+OKL+cUvflHukMzMzKxt68tXhSD6kex7ajYnT2bWpkUExx13HDfffDNnn302v/rVr8odkpmZmbVxEbFr3s+7tNS4ZSkYIekoSVMkzZf0nKTtMt7XV9K7kr5d5NpOkl6QVJ2O/aOWj9zMWlNEcMopp3Ddddfx61//mrPOOqvcIZmZmVk7JWlHSb+T9AdJAyXtI2m1xozR6smTpMOB64FbgINIygM+KmntBu7rC9wHDCxybUPgEeAd4EDgAeCmYkmWmbUfl1122ZfL9C666CIklTskMzMza2ck9Ur3PY0FTgSOJillfiIwIc0lMmnV5EnJ33zOBW6IiHMi4iFgf+BzkuBL3bcz8CKweYkupwLTgO9FxCMRcRJJcuZ/pjZrp1566SVOPfVUDjroIK6++monTmZmZtZUFwHbADuRJE25v1QcBnwIXJh1oNaeeVoXGAR8WfEiImqA0cBe9dx3L/DfevoMBx6MiPyNYPcCm0pavRnxmlkZzJ07l0MPPZTVVluNG2+8kYoKH0lnZmZmTfZd4JSIeJa8whER8QlwHrBj1oFau2DE+un7WwXtU4F1JHWJiNoi9+0UEa9LGlx4QVIlsHqJMXPP/KjpIZtZazv++OOZOnUqTz75JMstt1y5wzEzM7P2rRL4tMS1+UDPrAO19j/n9kvf5xa0z01jqSx2U0S83sQx869/SdLRksZLGr948eL6IzazVnX77bdz8803c/rpp7PTTjuVOxwzMzNr/54HTpCUP3GUm4H6Ecn2oExae+Ypt76wsM56rr2uNcaMiBuAGwAqKytbpOa7mTXfu+++y09/+lO23XZbV9YzMzOzlvIb4CngDeBfJHnDLyRtAGwF7JZ1oNaeeZqdvvctaO9DkuRUNWHMOfWMmf9MM2vDFi9ezGGHHUZdXR233norXbv6GDozMzNrvoh4GdgaeAk4AKgFRpIUrdshIp7LOlZr/+1kSvo+hCX3KA0BJhcUfMgkIuZJmp6OkS/3+c1GR2lmre7CCy/kmWee4W9/+xtDhhT+z9nMzMys6SJiIvC9YtckDYiIWVnGae2ZpynA+ySZHgCSugEjgDHNGHcMsJ+kLnltI4HX0yoaZtaGjRs3jnPOOYfvf//7HHbYYeUOx8zMzFqBpKMkTZE0X9JzkrZroP/2kp6RNFfS1PTA224ZnnNGPdd+QLKcL5NWTZ7SmaVRwM8kXSBpH5KDb1cELgeQtI6kbRs59CXA14A7Je0t6VKSuu3ntlz0ZrYszJ49m+9///sMHDiQa6+9ttzhmJmZWSuQdDhwPcnZrAcBs4BHJa1dov86JPuV5qX9LwdOIdsZTb+TNKpgvPUk/Rv4P5IjkTJpUvKUlgdvkoi4Dvg18APgLmAAsGdE5EqLnwlkXneYjvkqsB/JUr1/pj8fGRF3NjVOM2sdxxxzDO+//z633nor/fv3L3c4ZmZmtoxJEskkxw0RcU5EPATsT7IH6cQSt30b6AIcFBH/ioirgSuAo9Px6nMwcLykayX1lHQO8BqwHnBIROyRNfZMe54k7U5yuNSuwECgi6RFJEvwHgPujojHsz40Ii4FLi1x7QjgiBLXpvFVFb3Ca48Cj2aNwczK75ZbbuHWW2/l3HPPZbvt6p2pNzMzs45jXWAQcH+uISJqJI0G9ipxTw+ghuRcppwvSIrE9QAWlHpYRNwraS+SFW+HkpzrdDlwfkRUNybwemeeJA2X9ArwCLAOcC9wMnA0yQzRaGBL4GFJL0vaszEPN7POa+rUqfziF79gxx135Le//W25wzEzM7PWs376/lZB+1RgnYI6Bjm3klTJu1DS8pKGAb8E/hkRJROnnIgYC3wDqAaeAX7X2MQJ6pl5knQTsCNJVnZXRHxeT98VgB8C10p6Jp09MjMrqqamhkMPPZSKigpuueUWunQp9t9IMzMza6e6Shqf9/mG9JzVnH7p+9yC++aSTO5U8tVxRABExNuSfkVyVutv0ub/AEcWC0DSf1n6HFhIVrHtBrwlKXekUUTE0Pp/pUR9y/ZeAY6OiNqGBomIL4DLJF0N/DzLg806q8Gnji53CGV37rnn8sILL3D77bczaNCgcodjZmZmLWtxRGxVz/XcNpzC5CbXXrfUDdJPgBtJkqfbgdVJ9k2NljQ8IhYW3PJykfGbrWTyFBHXZB1E0vIRMSMiaoCrWiQyM+uQxo4dy+9//3uOOOIIDjnkkHKHY2ZmZq0vN+PTF8g/VqgPSeJUVeSeU4GHIuKnuYZ0dmsS8H3gz/mdl9VKuPqW7d0G/DQiCqfTCvuNIMkA12jh2Mysg5k5cyaHHXYYQ4YM4aqr/O8sZmZmndSU9H0IS+57GgJMTo83KrQWSVnxL0XEG5K+ADZq6IGSKtJ+AyhS9yHdE9Wg+pbt7Q68JumwiHi2SACVJOUBfwxMzvIwM+u8IoKf/vSnTJ8+nXHjxtG3b99yh2RmZmblMYWkavdIkrObSA+7HUFSkK6YN4Ed8hskrQusALxT38PSw3fvBlaheOXuICmD3qD6kqdNSbK7JyVdCJwdEXVpAN8AbiYpMXgF4FJZZlavm2++mTvvvJMLL7yQYcOGlTscMzMzK5OIiPTQ2mskzQSeBY4FViQpVpc7FHeliHg+ve1c4A5JfwL+DqwKnA1MA/7awCOvIjmE95i0/1J7qrJS8VmxvA7SiSQn974C/AT4EUlZwHdIDqJ9uqkPbwsqKyujqqrYskqzZaOzFIyYNmrElz+/+eabbLHFFmy99dY89thjrq5nZmbWgUmqjojKDP1OBk4gSZomACdHxHPptZuBH0aE8vofCJwBbEyyV+ox4LSI+LSB58wHvh0Rzf5LWIPJU/rAjYA7gA3TpquB3zalNnpb4+TJWltnS55qamrYbrvtmDp1Kq+99hprrrlmmSMzMzOzZSlr8tRaJL0BnBkRdzZ3rHoPyU0f1hU4hOQk4M9J1gmuA/Rv7sPNrOP7wx/+wMsvv8wf//hHJ05mZmZWDmcBF6QH6zZLvTNPkjYj2fc0lKSi3snATiSlAHsAx0TEP5obRDl55slaW2eZeQKonT+Hj244mu6rrMvK3zkPqdgezSXlL/czMzOz9qctzDxJmsuS5zzl4qkFFhR0j4jINDFUX6ny04Ezgc+AvSPi0fTSI2lSdRNwq6SRwM8jYmaWB5pZ5zH7mVupW1jNcrv/JFPiZGZmZtZCLqU1D8kFzgNuBY6NiNn5FyLic+Bbkn6aBrYTPufJzPIs+uxd5r7yMH0235vuKw0udzhmZmbWiUTE2YVtkpbLTfhI6k9Sze+twn71qW/P04ER8YPCxKkgqD8CWwIfNeahZtaxRQQzH/8TFd17MWDHQ8sdjpmZmXVikgZIegh4Lq95O+BNSXdI6p11rJLJU0Tcm2WAiJicPtzMDID5b7/Egmmv0H+HQ+nS27VlzMzMrKwuJTnD9td5bY+THMq7DXBB1oEarLYHIGmqpKHpzxXp541z1yNicdYHmlnHFrU1zHz8T3Rdfk36buHiD2ZmZlZ2I4CTIuKBXENELIqIh4FTgYOzDpQpeQIGk1TXg6RUef5nM7MvzX35QRbP/Ijld/sx6lLftkozMzOzVtGLpSvs5cwFBmQdKGvyZGbWoNrq2cwa9w96rr0lvdZp9lEKZmZmZi1hHHCKpCXKp6d7nX4FPJt1IP+zsJm1mFlP/41YNJ/ld/tJuUMxMzMzyzkFeBp4T9JTwKfASsDOQJf0PRPPPJlZi1j06TvMe/Vf9N1iBN1WXKvc4ZiZmZkBEBGvkRSM+CuwOrAbMJDkWKavp9cz8cyTmTVbRDBjzI1U9Kik/w4uTW5mZmZtS0S8B5zY3HGcPJlZs82f8hwL33uN5ff4GV169S13OGZmZtbJSToJuDUiPkl/rk9ExOVZxs2aPD0FzMkNnn6em/FeM+vAYnENM5/4M91WHEifzfcudzhmZmZmAJcAzwCfpD/XJ4CWS54iYte8n+uAXevpbtYpDD51dLlDaBPmvHwfi2d9zMqHnIcqupQ7HDMzMzMioqLYz81Vb/IkaVXgcGAQMBW4LSKmt9TDzax9q62ayexxt9NrnWH0Wvvr5Q7HzMzMbJkqmTxJ+jrwONA/r/l3kg6JiEeWeWRm1ubNGvs3YnENy7k0uZmZmbUhkv5Lshwvk4jYLEu/+maezgM+A0YA/wHWB24ErgbWyxqImXVMiz55m3mvPUbfYd+i2/JrlDscMzMzs3wv04jkKav6kqdtgZ9GxLj082uSjgWel7Sal++ZdV4RwYx/30BFr74M2P675Q7HzMzMbAkRccSyGLe+5GkA8GFB2/8AkZzI6+TJrJOqnvwsCz/4H8vveQwVPfuUOxwzMzOzekmqAIYClcBSBSQiYmyWcepLniqAuoK2hRnuM7MOrK5mYVKafKXB9Nnsm+UOx8zMzKxekrYD7gBWJ5kIKhRAppLBToLMrFHmvnQvtXM+ZcXv/t6lyc3MzKw9uBKYBfwC+IClJ4gyayh52kXSmnmfK0gys10lDc7vGBH3NDUIM2sfFs/9gtnP30mv9bej56BMRWnMzMzMym1T4MCIeLi5AzWUPI0q0X5xwefMU11m1n7NGvtXom4xy+3643KHYmZmZpbVe0C/lhiovuRp7ZZ4gJl1DAunv0nV62Pot8236TZg1XKHY2ZmZpbV74BzJb0VES83Z6CSyVNEvNucgc2sY5n5xJ+pqBxA/+0OKXcoZmZmZo1xMrAq8KKkxXxVBC8nIqJ/loFKJk+SxgC/iohXskYlaRjw/yJi16z3mFnbt+C9/7Lw/ddZbvejqejRu9zhmJmZmTXGgy01UH3L9i4D7pX0BvB34N6ImFXYSdLqwDeBHwHrAj9r6KGSjgJ+A6wJTABOiojn6um/CUmVjG2AGcC1JEla5PXZDzgb+BpJFY1rgGvz+5hZ08we9w8qKgfQZ+ie5Q7FzMzMrFEi4pyWGqu+ZXuj06TlRJLCEX+S9C7wPlAN9CdJftYkKf13FbBfRMyu74GSDgeuB84FXgKOAx6VNDQi3inSf2Xg38DrwCHAFsAFQC1wSdpne+Be4DbgFGBbkmQLkiTKzJpowQcTWfDuqyy364+p6Naj3OGYmZmZNUjSScCtEfFJ+nN9IiIuzzRulokZSd2B4cAuwGCSxOkLkkRqDPBERNRkGEfAO8DDEfHztK0bMBl4MCKOL3LPOcAxwMCIqE7bziOp075qRNRI+gOwNzAkIurSPrcBm0XEJvXFVFlZGVVVVQ3+GZgVGnzq6HKH0Co+ueMsFn3yNmv89CYquvdc5s+bNmrEMn+GmZmZLTuSqiOisswx1AHbRsSL6c/1iYhouUNyI2IR8FD6ao51gUHA/Xlj10gaDexV4p7hwJhc4pS6FzgDGAaMA3oA83KJU+oLYPlmxmvWqS38aDIL3vkPA3Y+olUSJzMzM7OWEBEVxX5urhYbKKP10/e3CtqnAutIKpbxrV+if/54fwLWk3S8pP6ShgM/JNmrZWZNNHvcP6jo2Ze+X9+n3KGYmZmZNYukXpJ2lvRdSctJGtzYMVo7ecodTjW3oH1uGkux6b1+Jfp/OV5EjAN+T7LPaRbwGPAMyf6npUg6WtJ4SeMXL17cyF/BrHNY+PFbzH/7JfoNG+kKe2ZmZtauSToZmA48AdxKcqbtdZKelpSpTDm0fvKk9L1wo1Wuvdh6RBXpn5Pb33Q+cBZJYYtdSSr+DSMpILGUiLghIraKiK26ds20ctGs05k97h9U9Kik75b7ljsUMzMzsyaTdCxJnnAJsDVf5R5XklTqPj/rWK2dPOUq8fUtaO9DkggVq9wwu0j/3OfZacGJk4HrI+K0iHgyIv4I/AA4WNJuLRO6Weex6NOpzJ/yPH23+hYVPcq639PMzMysuX4JnBMR5wNfnmEbEY8CvwUOyDpQpmmXtLz46Ij4osi1VYHDIuKSDENNSd+HsOQ+piHA5BJnMk1Jr1PQH5IqfSsCPYHnC/o8k75vBDyeITbrpDpL1bzGmD3udtS9N3232r/coZiZmZk11xosnSvkTAVWyDpQ1pmnv7B0ApOzNdmnuqaQlDcfmWtIZ45GkJQ8L2YMMFxS/j9/jySppjcB+Ixkn9MOBfdtk74vdXaUmZW26LNpVE9+ln5b7keXnn3KHY6ZmZlZc00B9itxbXe+muBpUMmZJ0ljSPYNQbIu8IkSNdJ7Ay9neVhEhKRRwDWSZgLPAseSzB5dnj53HWCliMhlh9eRHKT7kKSLgaHAacCpaQl1JF0AXCRpNvAIsB7JIbwvpp/NLKPZz92Buvei77BvlTsUMzMzs5ZwIXCrpAEkRy8FMEzSgSTbf36WdaD6lu0dBxxMkjidRVL2+4OCPrUksz7/yPrAiLhOUi/gBOBEktmjPSMiV378TJIy40r7T09Lj18J3AV8Apyev0wwIi6RNJdkPeMv0zhvBc6OiNqssZl1djVfvE/1pKfpt+1BdOnVr+EbzMzMzNq4iPi7pO7ABSR1EQD+QLKS7eSIuDnrWCq+zaigk/Q74MaI+Kjx4bZtlZWVUVVVrE6FdRbe8/SVzx+8lOo3x7HGz/5Ml96Zq3a2qGmjRpTluWZmZtYyJFVHRJurOCVJJNX1licpSvdGYyda6lu2twUwKSLmAw8Aq6bFIYqKiP805sFm1rbUzPiQqolP0W/YyLIlTmZmZmbLSlqc7o3mjFHfsr3xwLYk+4bGU/qspdw5TF2aE4iZldfs5+9EXbrSb+vM1TrNzMzM2jxJqwDXkJwHO4Cvznn6UkRkymXqS552BSbm/WxmHVTNrI+pev1x+m65H10qlyt3OGZmZmYt6QaSfOYvwDSS82WbpGTyFBFPFftZUleS6nifR8Tipj7YzNqOOc/fCRVd6Lf1geUOxczMzDoJSUcBvwHWJCkid1JEPFdP/5WAS4F9SY5cGgv8Mq/wXCm7A8dFxF+aG3PWc56QtK2kfwPzSKrZbSbpFklZz3gyszZo8exPmfffMfQd+k269s18RpyZmZlZk0k6HLgeuAU4iKSC96OS1i7RvxvwGMkZs0cBRwDrAA+nlfTqMxf4sCXizpQ8SdoNyM0+nc5X6wRfB06VdFJLBGNmrW/2C3cB0G+bb5c5EjMzM+sM0qp35wI3RMQ5EfEQsD/wOclRRsUcDqwPfDMi7o6Ie4HvA32BTRt45I3AryT1aG7s9e15yncRcHtEHJ4u27sYICJGpWc2HQ1c1txgzKx1LZ7zOfNe+xd9NhtO134rlTscMzMz6xzWBQYB9+caIqJG0mhgrxL3HAA8EhHv5d0zAVi9WGdJ9+d9rAB2Az6Q9CpQXdA9IuJbWQLPumxvE5IpNVi66t4TJL+8mbUzc168GyLov+3B5Q7FzMzMOo/10/e3CtqnAutIKlb5bjPgDUm/k/SxpIWSRksaWOIZ/UhmpfoClcDTJKvmuuS15179sgaedebpU2Aj4F9Frm2YXjezdmTxvBnMnfAIfTbZna79Vyl3OGZmZtZxdJU0Pu/zDRFxQ97nXLIyt+C+uSSTO5XAnIJrKwFHklTL+3Ha5yJgtKSvFxayi4hd6gtQUkVENLrqXtbk6f+A8yTNBh7O3StpOHA28OfGPtjMymvOC3dDXS39POtkZmZmLWtxRGxVz/Vc/YTCFW259mJJTTegO7B3RMwCkDQVeAk4ELijvoAk/QbYPiJGpk07SboFuDAirqvv3nxZl+2dA9wF3MRXlSrGAY+SlAg8K+sDzaz8aqtmMm/CI1RuvCvdllut3OGYmZlZ5zI7fe9b0N6HJHGqKnLPPOCFXOIEEBHjSar01VswQtJpwHnApLzmt4DbgEsk/Txr4JlmniKiFjhS0ihgF2AFkl/6mYh4NevDzKxtmPPiP4naGvpvd0i5QzEzM7POZ0r6PoQl9z0NASZHROGMFGm/YiXJu7L0DFaho4DfRMSVuYaI+BA4RdInwC+BP2QJPFPyJGmNiPgwIiYDkwuudU2D+X2WscysvGqrZzP3lYeo3PAbdFt+jXKHY2ZmZp3PFOB9YCRpTYX0HKcRwOgS9/wLOFHS6hHxUXrPziSzVeMaeN4qwMQS114DShWdWErWZXvPFDuwStI30geel/WBZlZec8bfR9QspP923yl3KGZmZtYJpTNLo4CfSbpA0j7AfcCKwOUAktaRtG3ebZeTrHx7WNJISYeSLLsbR/GidvkmAqX+4nMwBZND9claMOIDkgRqeERMkrQCcAnJYVX/BXbO+kAzK5/a+XOZ+/ID9N5gR7qtuFa5wzEzM7NOKiKuS8+LPYHkYNwJwJ4RMTXtcibwQ9IiEhHxmaQdgEuBvwE1JOdE/TJD1bwLgbvSsuYPklQKXwnYFxgOZN7HkDV52oOkgsVTkq4ATiKpkf5L4NqmlPkzs9Y375WHiEXz6b+9Z53MzMysvCLiUpJkqNi1I4AjCtreJlnq19jn3CPpYOB04Iq8S/8FDomIu7OOlbVgxAJJI4EbgfOBJ4HvRMRnWR9kZuUVixcx5z8P0HPIlnRfaXC5wzEzMzNrNWmCdLeknsDywJyImNfYcUomT5IOLNI8Gtgc2Bo4UNKXyVNE3NPYh5tZ65n3vyeoq5pFv62L/U/bzMzMrOOSNACojIgPJX1KUnxiIHBPRDyRdZz6Zp7uauDe/HJ+QbKMz8zaoIg65rz4T7qvsg49B25W7nDMzMzMWk1a5O5BkvzlFOBq4GjgXeAXkr4XEfUesptTX/K0VHU9M2uf5r89nsUzPmDF/X6FpIZvMDMzM+s4ziepyneZpOWAHwGXRMQpki4GfktS36FBJZOniHi3JSI1s/Kb8+I9dOm3Er2/tmO5QzEzMzNrbVsC+0fEJ5K+T5ID3ZpeexA4NutAWQ/J7QL8DNgVGMDS50NFROye9aFm1noWTn+The+/znK7/QR1yVpg08zMzKzDqAZ6pD+PAKZHxGvp57WAGVkHyvo3qYtJypL/F5gGuDS5WTsx58V/oh6V9Nnsm+UOxczMzKwcngDOlbQp8G3gGoC0mvgFNHzI7peyJk8/AM6PiLMaF6eZlVPNrI+pnvws/bY+gIoevcsdjpmZmVk5HAfcTHLw7pPAuWn7lcAU4NdZB8qaPPUAHs8cnpm1CXPH3weqoO+W+5U7FDMzM7NyWRv4VkQsKmjfIiK+aMxAhXuXSnkQOKAxA5tZedXOn8u81/5F5UY707XviuUOx8zMzKxc7gEOKWxsbOIE9R+Se1Lex3eA30haF3iOZNNVwbPj8sY+3MyWnXkTHiZqFtJv6/b17x6DTx3dpPumjRrRwpGYmZlZB7EwfTVbfcv2LinStnf6KhSAkyezNiIW1zDn5fvpufYWdF9pcLnDMTMzMyuny4EbJe0ITAI+LewQEfdkGai+c56yLukzszamauIT1FXNot/WB5Y7FDMzM7NyuyJ9P67E9QC6ZBko86EvkrYHvhERo9LPmwO/Ai6NiFeyjmNmy1ZEHXNe/CfdVh5Cz0FDyx2OmZmZWbmt3VIDZT0k91vAXcDTwKi0OYD1gHGS9o6IJ1sqKDNruvlTX6bmi/dZYd+TkVTucMzMzMzKKiLebamxss48nQ38KSJ+nhfEq8A2kq4nSai2bamgzKzp5rx4D136rkjlBjuVOxQzMzOzspPUBfgZsCswgKUrjkdE7J5lrKz7mtYH7ihx7Q5gk4zjmNkytHD6FBa+91/6bbU/6pJ5Va6ZmZlZR3YxcDXJqrkqYHbBa07WgbL+7Wo6yczSE0WubQl8nvWBZrbszHnpn6h7b/oM3avcoZiZmZm1FT8Azo+Is5o7UNbk6c/AWUo2UDxIUt5vJWBf4Ay+2gdlZmWyePYnVL/xDP2GjaSiR+9yh2NmZmbWVvQAHm+JgbImT6OAVYFzgPPy2muB64HzWyIYM2u6OS/dBxJ9t9y/3KGYmZmZtSUPAgcATzZ3oEzJU0TUAcdL+h3J8r3lSNYHvhgRnzU3CDNrntoF85j32r+o3PAbdO23YrnDMTMzMysrSSflfXwH+I2kdYHngOqC7hERl2cZt1E7yiNiJvBwY+4pRtJRwG+ANYEJwEkR8Vw9/TcBrgS2AWYA1wL/LyIir88Q4DJgd2AB8AhwckQsdYKwWUczb8LDRM0C+m19QLlDMTMzM2sLLinStnf6KhRApuSpZLU9SXMkbZn+PDf9XOo1O8vD0rEOJ1nqdwtwEDALeFRS0cOrJK0M/Dv9pQ4BbgAuAE7O67McyRlUqwDfBX4J7ALcnjUus/YqFtcwd/z99Bz8dbqvPKTc4ZiZmZmVXURUNOLVJeu49c08XUpSZS/3c9TTN5O04MS5wA0RcU7a9hgwGTgROL7Ibcekce4fEdXAQ5J6AKdJujIiaoCTSBLBb0bE3HTcOcC1klaNiI+bG7tZW1U18Ulqq2aywoiTGu5sZmZmZktoTL5QMnnKJTfpz2e3QFwA6wKDgPvzxq6RNBooVVt5ODAmTZxy7iWp8jcMGEeyAezvucQpHfcB4IEWitusTYoI5rz4T7qtNJiegzcvdzhmZmZmbY6kfsCZwM4klfeUuwT0BgYC3bKMVTJ5knRgI2KKiPhnhn7rp+9vFbRPBdaR1CUiaovc82SR/gDrSxoPbAD8UdJVJHXce5AkWMek+7TMOqQFU1+m5ov3WGHESSQTu2ZmZmZW4CrgUOAhYCOSghGTgR1Jtv38IutA9S3bu6sRAQWQZa1gv/R9bkH7XJJld5UsfcJvvxL9c9eWS5/9W2A88B2SQhQXAbdRZFOYpKOBowG6d++eIWyztmn2i/fQpc8KVG64U7lDMTMzM2ur9gFOj4iLJZ0IDI+I70iqJDn/abOsA9WXPBUt4NBMuX8aL9w/lWuvK3FPqf1WdXw1xTYHOCAiFsOXe57ulLR1RLyYf1NE3EBSeILKyspm7+UyK4eFH7/FwvdeY8AuP0JdMs00m5mZmXVG/YEX0p9fB04FiIgqSZeSnGmbSX17nt5tToQl5Kry9QU+yWvvQ5IIVZW4p29BW9+8a/PSn8fkEqfUY+n7psASyZNZRzDnxX+i7r3ou/me5Q7FzMzMrC2bDqya/vwmsKKk1SJiOvBZ3rUGZTrnSVIFcBTJlFclS5c4j4jYPcNQU9L3ISy572kIMDn/3KaCewrrL+c+T46IWZI+BwrX3+X+Kd4zS9bhLJ79KdVvPE2/rb5FRY/KcodjZmZm1pbdB4ySNDMiHpP0DnCWpIuAnwOZJ41KnvNU4FLgDyR7iapIZnzyX4X7lEqZArwPjMw1SOoGjADGlLhnDDA8XZOYMxL4guSAXUhmmfaR1Duvz4j0fVzG2MzajTnj7wOJvlvtX+5QzMzMzNq6M4CJfHVO7EnAkcDbJFW7zylx31IyzTwBhwHn5Jcvb4qICEmjgGskzQSeBY4FViQ91VfSOsBKEfF8ett1wHEk5ztdDAwFTgNOjYhFaZ/zgP3TPheRlBu8CPhHRLzRnJjN2praBfOY9+qjVG6wE137rVTucMzMzMzaHEl7Ak9HRHV6nNG+6VmxRMT9kjYBtgBeiYgp9Y2VL2vy1AMY29igi4mI6yT1Ak4gORh3ArBnROTKj58J/JC0iERETJc0HLiSpALgJyTVMi7JG3OSpJ2B/wfcTVKN788kSZZZhzJvwiNEzQL6bd2Y0wTMzMzMOpWHgUWSXiBZyfZv8uogRMRbLH18UoNUfJtRQSfp78CnEXFCYx/Q1lVWVkZVVbE6FdZZDD51dLlDyCxqa/jw+h/TbYWBrPLd88sdTpsybdSIhjuZmZnZMiepOiLKuilb0jCSc5x2SF+rkBSae5okmRoTEa82dtysM0+PAJdLGkJS5q+64HpExOWNfbiZNU7VxLHUzpvBCnt3uH/HMDMzM2sxEfES8BJLbg3aiSSR+glwsaQvgCdIEqkbsoybNXn6S/o+gq8KMSwRXy4wM1s2IoI5L95Dt//f3p2H11WV7R//3k3TKR1pywyFgryIDApU5nmUeVRwYPAV+PmCKCCTgDKIoIKKAmKdcEZlkhmhQqulUMqkQCmFMoNMLU06pE2b5/fH2gdOD+ckO2mS0yT357rOtc9Ze++1nxP2FfJ0rf2sUWMYsO7m1Q7HzMzMrNuIiOdJBSKuzQrW7UaqJn4QcBjZGrCtyZU8RUTeqnxm1kkaX3iUpndeYuQ+pyCp9RPMzMzMDABJWwJ7kJKmrYGBwDPANaTnoXLJO/JkZlVWP/VGagavRN1GO1Y7FDMzM7MVmqR1SMnSHsCuwErA66Tnnb4M3JstktsmFZMnSfXALhHxiKQGWllsNiKGtvXiZpbP4jefp/GlJxi+8zGoprb1E8zMzMx6t+dJa9HeR1rH6d6ImL68nbY08nQ58EbR+9bL8plZp6ifehPqN5Ahm+1d7VDMzMzMuoP5wGBgLdIasGtKeiEiGpen04rJU/GCuBFx/vJcxMzab0n9W8yfPokhW+xPnwGDqx2OmZmZWXcwAtgK2J00de9koFnSA6RnnO4FpkWedZuK5C4EIWmYpHMl3SdpuqSPSTozW73XzDpJ/bRbABi65YFVjsTMzMyse4iIpRHxQERcGBE7ACOBTwP/AT5PWn7pHUnXSzohb7+5kqfsgav/AKeS5g5uAPQHNgVuk/SptnwZM8unuXEe8564m0Ef3YG+w1audjhmZmZm3VJEzIuIWyPiaxHxMdKo1J3A/sDVefvJO/J0Ben5p7WBQwFlQXwOuAn4ZhtiN7OcGp64m1i8kKHjDq52KGZmZmYdStJxkmZKWihpiqRt2nDu+ZJyTbmTNEDSDpLOkHSTpP8CDwI7A38Fjs973bylyncFPh8R8yTVlOz7GXBz3guaWT6xtImGabcwYMym9F91/WqHY2ZmZtZhJB1FWmPpQuBh4CvA3ZI2i4gXWjl3Y+DsVo45Etgme20K1AJvAveTBn7uj4hn2xp33uRpMWkhqXJWAha19cJm1rL50yexdN67jNz7K9UOxczMzKzDSBIpaRpfKFIn6R5gBnAKqbhDpXNrgF8CbwNrtHCZP2THTAR+BdwXEc8sb+x5k6fbgW9LegSYlbWFpJVIWd/dyxuImX0gIqifehO1o8YwYOwW1Q7HzMzMrCOtD4wBbik0RESTpNuB1tZlOQUYCvwEuLSF4zaJiKeWN9BSeZ95Oo00uvQU8O+s7ZekxaeGAad3dGBmvVnji4/R9PaLDP3kwaR/nDEzMzPrMTbIts+VtM8C1ivzmBAAktYHzgeOo5WZb52ROEHO5Cki3ga2IM1F/DepLvrzpOA/HhGvd0ZwZr1V/dSbqBm8EnUf3anaoZiZmZl1tKHZtqGkvYGUn9SVnpBN9fsF8LuI+FfnhldZ3ml7ZKvx/ix7mVknWfzWLBpffIzhOx2N+tZWOxwzMzOztuoraVrR5/ERMb7oc2FaTWm1vEJ7c5k+TyBN9zugY0Jsn9zJU1bVYmdgOB8esYqIuKjjwjLrveqn3oRqBzD4414+zczMzLqlJRGxZQv752bbIaQKeAWDSYnT/OKDJa0FfA84FlggqS9ZPpK9b46IcglXh8uVPEn6X9KIUx/ScFppcAE4eTJbTkvq32b+9EkM2Xw/agYMrnY4ZmZmZp1hZrYdy7LPPY0FZkRE6YjUbqRE6/oyfTUBF5AeJ2qRpIHAJ4HVSAXvhkXEi20JPO/I0zeAW4EvRsSctlzAzPJreORWiGDollUdkTYzMzPrTDOBV4CDgL8DSKoF9iVV+S51KzCupO1I4NSsvdX6C5JOA84jPW8V2XnfljQE2C8i5rZ0fkHe5Gl14DgnTmadp3nRfBoev5NBG25P32GrVDscMzMzs04RESHpUuBKSXOAycBJwCjghwCS1gNGR8SDEfEu8G5xH5K2z/qaRisknUQqa34BcBcwNdt1BfA74NukwnityluqfBqwUc5jzawd5j1xN7F4IUPHHVztUMzMzMw6VURcTVru6Auk6XjDgb0iorCm7HnAlA663NeACyLi28BjRTHcTZphl/uPr4ojT5I2L/p4LfCDbJ7gFGBB6fER8Wjei5rZsmLpEuqn3UL/tTeh/2ofqXY43dI6Z5Ub5W/di5fu28GRmJmZWR4RcTlweYV9xwDHtHDuj4Af5bzUGsCDFfbNAkbm7KfFaXvTWLZ8oIDvUr6kYABlF7Mys9bNf+afLG14h5F7nVjtUMzMzMx6mpnA/qS1akvtxgcFLFrVUvK0SxuDMquq9o48VFtEUD/1RmpHrs2AsVtUOxwzMzOznuYS4A+ShgN3kBWMkHQIcBrw//J2VDF5ioiJxZ8lDQO2jIgJ2ecxwB7AnyOidHVgM8up8aUnaHrrBUZ+6mSkvI8hmpmZmVkeEfEnSf2Ai0nPWAH8lFSE4rSIuDZvX7n+UssWyJ0OFK8MvC7wE+BRSevkvaCZLat+6o30qRtO3UYe7DUzMzPrDBHxG2At4KPA9sAmwKoRcVVb+sn7z9yXkxaw2roogPtJJcxfJyspaGZts/itF2h84VGGbnEA6ltb7XDMzMzMehxJ90s6HhgeETMi4oGIeCoilra1r7zJ01bARRHxdnFjtu7TpcBObb2wmUH9wzeh2gEM/vinqh2KmZmZWU/1DvAD4L+SbpP0WUl17ekob/LUSBplKmck0Nyei5v1Zkvq32H+0xMZvOke1AwcUu1wzMzMzHqkiDgMWBk4GlgE/Bx4U9J1kg6UlHv6T97k6TbgYknbFjdK2ob04NUteS9oZkn9wzdBBEO2PLDaoZiZmZn1aBGxICKui4hDSYnUl0jF8/4K/DdvPy2VKi92OrA58E9Jc4G3gNGklYAfB76eO3IzY+n8Ocx7/C7qPrYLtcNXrXY4ZmZmZr1CNsq0M7AnqXBEM/DPvOfnSp4iYo6kccB+wDbASsBc4AHg1ohY0rawzXq3+oduJJY2MWybT1c7FDMzM7MeLUuY9gIOBw4AhgCTgHOB6yPivbx95R15IqtG8bfshaS+wDAnTmZts3T+ezQ8dgd1G+1E7UprVDscMzMzs57uHWAw8ChwIXBdRLzRno7yrvPUX9LFkj6ffd6WNHXvraz036j2XNysN6qfWhh1+ky1QzEzMzPrDX4AbBgR4yLih+1NnCB/wYhLgFOAQiWK3wKvAscCqwKXtTcAs95k6YK5NDx2O4M+ugO1I9esdjhmZmZmPZKklSQVcp2fAO9mbWVfefvNO23vcOCUiPh19uzTWOCIiPiLpAXAT9v0bcx6qfqHbyKaFjN8myOqHYqZmZlZT/Y2qVbDVNK0vWjl+Jo8neZNnkYBT2fv9wOagDuzz7OBATn7AUDSccAZwJqkan2nRsSUFo7fGLiCtFjvbOAq4HsRUfaHIOlaYOeIWKctcZl1pqUL62l49HYGbbg9taPWqnY4ZmZmZj3ZF4Hns/fHdlSneZOn54HtJD0IfBr4V0Q0ZPuOAJ7Ne0FJRwHXkB7Wehj4CnC3pM0i4oUyx68M3As8mV17c9LaUkspM11Q0p6kBbBeyhuTWVeof/hmYnEjw7b1qJOZmZlZZ4qI3xR9fAF4NCLmlR4naTiwR95+8z7z9H3g26Thrw1ID10haQopq7s0TyeSREqaxkfEBRFxB6lc4DukZ6rKOZGU5B0QEXdExLdJz2CdXboasKTBwHjgtZzfy6xLLF3YQMMjtzLof7aj3+gx1Q7HzMzMrDe5D/hohX1bkuo55JJ3naffSJpBWkhqSkRMznbdBZwZEZNyXm99YAxwS1HfTZJuB/aucM7uwISIWFDUdjOpLvs40lpTBZcCs4B/AwfljMms0zVM+xuxeCHDtvOok5mZmVlnk3Q9adAHQMAfJS0sc+iawIt5+82VPEn6I/CziFhmmlxEXJD3QpnCF3iupH0WsJ6kmmw9qdJz7i9zfGHfA1mM25PmM24GnNTGuMw6zdLGedRPu4VBG2xLv9HrVDscMzMzs97gh8CXsvcbAzNIs+iKLQX+Dvwsb6d5n3naF/h53k5bMDTbNpS0N5CmENYB9WXOKXf8+/1JGgD8ErgwIp5LswPNVgxp1GmBR53MzMzMukg2U24yQJYbXBQRs1o8KYe8zzzdBpwoacRyXq+Q1ZRWySu0N1c4p1JpwcLx5wMLgMtzBSEdL2mapGlLlizJc4pZuzRno04DP7I1/VYeW+1wzMzMzHqdiDi2pcRJ0ifz9pV35GkQafTpYElvA299OKbYLEc/c7PtEODNovbBpERofoVzhpS0FT7PlbQFqdjEjgCS+pIlY9n7paUlzSNiPKmwBHV1da3VfDdrt/pHbiUWzWf4dkdWOxQzMzOzXknSGsCPgJ2A/nwwcCPSkkt96OB1nt4D/tCWICuYmW3HsuxzT2OBGRXWbZqZ7afkeEhzF/cH+gEPljm3ifQc1LXtjNes3ZoXLaDh4ZsZuP5W9FtlvWqHY2ZmZtZb/RjYjZQTbA8sJNVN2BPYBDgsb0d5q+111MJSM4FXSJXw/g6QlRvfF7i9wjkTgBMk1UVEYWTqIOBd0gK7r5KmFRY7FdiZVAb9Q2tHmXWFhkdupXnRfIZ51MnMzMysmnYBzoqIayT9H3BoRJwp6WzgDuBg4KY8HeUdeUJSH2AjYDhlnpXKU648IkLSpcCVkuaQHuI6CRhFqoiBpPWA0RFRGEm6mrSQ7h2Svk+qpnc26QewGHg9exXH+hawOCKm5f1+Zh2pedEC6h++mYHrjaP/qutXOxwzMzOz3mwQ8FT2fjrwCYCIaJZ0NfCTvB3lLVW+DXADsAofzBEsFuScJxgRV0saCHyV9KzS48BeRQ9xnQccXbhORLwhaXfgCuB60rNS55SWTTdbkTQ8ehvNjQ0edTIzMzOrvpdIj/38E3gGGC5p3Yh4gVR0blTejvKOPP2Y9NzTiaRFpMpVxcstIi6nQmW8iDgGOKakbRqwXRv6/xrwtfbGZ7Y8mhcvpP7hmxkwdgv6r7ZB6yeYmZmZWWe6DrhcEhHxG0n/AX4g6QrgG6Q6CrnkTZ42Bg6LiErPJZlZpuHR22leWM/w7T5b7VAsh3XOav+vtRcv3bcDIzEzM7NOchEwEtgb+A3wZeBW4EDS+rGH5O0ob/L0EmmuoJm1oHlxI/VTb2TAupvTf/X/qXY4ZmZmZr1eRCwh1VkofH5A0rrAhsAzEVGft6+8i+R+E7hY0rg2RWrWyzQ8dkc26uRnnczMzMxWVBFRHxFT25I4QQsjT5IaSIUgCuqAByUtBRo/fP0Y1pYLm/U0zU3ZqNOYj9N/jY9WOxwzMzOzXqtMLtOiiBia57iWpu1d3pYLmvV28x67k+YF7zFse486mZmZmVVZp+QyFZOniDi/oy9m1lM1NzUyd+oNDBizKQPW/Fi1wzEzMzPr1Torl2nLIrkjga2A/nyw1pNIhSS2iYj/6/jwzLqHeU/cTfP89xh24FnVDsXMzMzMikg6qrVjIuK3efrKu0juwcAfgAF8MPylovfP5unHrCeKJYupf+gG+q+9CQPW2rja4ZiZmZnZsq6t0B7AImAekCt5aku1vUeBzYFfkRKpjwGnA4uBU3L2Y9bjNDxxN0vnzXaFPTMzM7MV04gyr7WAzwNvAgfn7SjvtL0NgU9HxOOS/gGcHRHTgemSRgDnAnflj9+sZ2he3Ej9g3+l/5ofo/9am1Q7HDMzMzMrERFzyzTPBf4kaRBwBbBlnr7yjjw1kVbfhTRF738k1WafJwCuy2y90twpf06jTjsdjaTWTzAzMzOzFclLpBl1ueRNnh4FDsneTyc977RD9nnt3KGZ9SBNs1+jfupN1G28KwPW3Kja4ZiZmZlZGZJWKvMaJWlT4Bzg+bx95Z22dwlwu6SVI+IISX8B/ijpLuAA4J42fwuzbiwimH3veNS3lhE7HVvtcMzMzMyssneovObTIuDwvB3lSp4i4m5J2wKFf14/HrgS2Bq4FTgt7wXNeoKFz02l8YVHGLHrl6gZPKLa4ZiZmZlZZV/kw8lTAPXAfRWeiSqrYvIkaQpwL/APYHJETAWmAkTEgiwIs16nuWkRcyaMp3bU2gzZfL9qh2NmZmZmLYiIazuqr5ZGnuYAJ5LmATZKmkwqDjEBmBYRlYa+zHq0+oduYMncN1nliO+gmtzrTJuZmZlZlUj6DLAVMLzM7oiI/83TT8WCERGxDzAS2JQ0Le+/wAnAQ8BsSTdJOkmSK+1Zr9H03n+pf+h6Bm24AwPGbFrtcMzMzMy6LUnHSZopaaGkKZK2aeX4bSXdJ+k9Sa9L+q2kVXJc5wrgT8BhwCcqvHJp8Z/Ns9GlJ7PXT7OLrw5sn72+AFwu6Z2IWCPvRc26qzn/+AVIjNgl1z9OmJmZmVkZko4CrgEuBB4GvgLcLWmziHihzPEfJc2Auwc4krTQ7UXZOeMioqmFy30WuDwiTl/euNs050hSX2AssD6wHrAaUEMalTLr0RbOeoSFMx9k+E5H03foqGqHY2ZmZtYtKS2OeSEwPiIuyNruAWYApwAnlzntJOAN4NBCoiRpJqkmwx7AHS1ccikdVB281eRJ0kZZQHsAOwF1wAukYhLXAhMiYnZHBGO2ooolTcy+92f0HbE6Q7c8qNrhmJmZmXVn6wNjgFsKDRHRJOl2YO8K5zwFPF0ywjQj267byvWuBk6W9K+s8F27tVRt71pgd9Lo0rvAfcCpwD0R8eLyXNSsu6mf9jeWzHmdlQ+/APWtrXY4ZmZmZt3ZBtn2uZL2WcB6kmoiYmnxjoi4ukw/+2fbZ1q53g+BacBrkmYApQlURMRurYfd8sjTUaSk6VvAlRHxXp4OzXqaJfXvMPeB6xj4ka0ZOHaLaodjZmZm1t0NzbYNJe0NpIJ2daQ1mCqStBZwGSkp+kcr1/sl6ZGjqcCbbQ22WEvJ09nAbtn2m5Kmkabq3QNMiYgly3Nhs+5izn2/hGhmxK5fqnYoZmZmZt1B3yx3KBgfEeOLPivbli59VGhvbqnzLHGaQEq0jsixhNI+wEkRcU0rx7WqYvIUEd8FviupP7ADKZHaB/gGsFDSJFIidW9EPLm8gZitiBpf+jcLnvknw7b7LLXDV612OGZmZmbdwZKI2LKF/XOz7RCWHQkaTEqc5lc6UdLGwJ1ALbBHRDyfI545pJoNy63iOk8FEbEoIu6NiLOzH8LKwBeBl4Bjgcclvd4RwZitSGLpEmbfew01w1Zh6FaHVjscMzMzs55iZrYdW9I+FphRaSRJ0lbAJFL1vB0i4t85r/cj4DxJK7cj1mW0tVS5gLVIi+cOIA21BekLmPUoDY/eTtM7LzP6kHPpU9u/2uGYmZmZ9RQzgVeAg4C/A0iqBfYFbi93gqR1SCNObwK7RURbBm+2BjYBXpf0gszJjgAAHZhJREFUCh9+1ioiYrM8HbWYPEkamV1sm+w1jvQA13+BicBVwH0RUVopw6xbWzpvDu/96w8MWHcLBq6/VbXDMTMzM+sxIiIkXQpcKWkOMJm0jtMoUmU8JK0HjI6IB7PTriAVmjgRWFvS2kVdvhQRb7RwyXnAjR0Re0ulyp8lVaUQ8BZwP3AGKVmaUek8s55gzsRfE0sWs9Lux5MGXM3MzMyso0TE1ZIGAl8lLYz7OLBXRMzKDjkPOJo0+a2WVHuhBvhjme5OJ1Xeq3StYzsq7pZGnp4gzQ+8PyKe7qgLmq3oGl99mvlP/oOhWx9O7UprVDscMzMzsx4pIi4HLq+w7xjgmOx9E6lARLtI2jFHLJPy9NVStb3D2xKUWU8QzUuZfc811AwZxbBtPlPtcMzMzMxs+d1PqtNQOp2ouDBFTZ6O2lQwwqyzrXNW2WcEu8y8J+6m6a1ZjDrgTPr0G1DVWMzMzMysQ3yiTNtgYEfgy0DusspOnswySxfM5b1Jv6X/2psyaMPtqx2OmZmZmXWAiHiiwq7JkhqB7wG75OnLyZNZ5r1Jv6N50QJW2v0EF4mwXNo7Uvripft2cCRmZmbWTo8BF+c9uNVFcs16g0VvPMu8J+5myBb702/0mGqHY2ZmZmadTNJQUon0lsqcL8MjT9brNTfO451bv0/N4BEM3/6z1Q7HzMzMzDqQpAaWLQ4BaRBpIKmIxP/m7cvJk/VqEc28c+tlLJn7FqsceQl9+tdVOyQzMzMz61iX8+HkKYB64M62rGHr5Ml6tbmT/8TCWdNYaY8vM2DNjaodjpmZmZl1AEmDImIBQESc38qxn4iIx/L0W5VnniQdJ2mmpIWSpkjappXjN5Y0QdI8SS9LOlMlT/RL2k/SQ5IaJL0o6ceShnTuN7HubMFzDzF38p+o23h3Bn9in2qHY2ZmZmYd525Jg1o7SNLZwJS8nXZ58iTpKOAa4Pekmurvkb7cuhWOXxm4lzS09mlgPKkixmlFx+wC3AI8lfV5MXAE8OfO+h7WvTXNfo13br2cfquuz0p7ftnV9czMzMx6ls2Bv0saXG6npLUlTSTlDZVKmX9Il07by0aLLgTGR8QFWds9wAzgFODkMqedSIrzgGzo7Q5J/YGzJV0REU3A14HJEfHFomu9B/xF0kYR8XRnfi/rXpoXLeDtGy9GNX0ZfdA36FPbv9ohmZmZmVnH2ge4lZRA7RURDYUdkj4P/IRUMOIc4Lt5O+3qkaf1gTGkUSIAsuTndmDvCufsDkwozFnM3AysBIzLPj8IXFVyXuHBr7IjWtY7RQTv3nkFTbNfZdSBZ9J32MrVDsnMzMzMOlhETAT2ADYE7pE0VNJwSdcBvwWeB7aIiEsiojlvv11dMGKDbPtcSfssYD1JNRGxtMw595c5vrDvgYi4qMy19s+2z7QzVuuB6h+6gQUzJjN85y8ycMxm1Q7HeikvrmtmZtb5IuIhSbsCdwOTSIMvqwDfBC4pk3e0qquTp6HZtqGkvYE0ClZHKhlYek6544v7W4akzYCzgRsj4vky+48Hjgfo169f3titm1v4wmO8N+m3DNpwB4Z+8uBqh2NmZmZmnSwiHpe0M6mGwirAbtmoVLt09bS9wlP5pXXWC+3lhsxU5viCDx0vaVPg78BrZAlSqYgYHxFbRsSWffu6WntvsGTum7xzy/eoHbkWIz/1VReIMDMzM+slImI6sD3wCvADSSu1t6+uzhzmZtshwJtF7YNJidD8CueUlhwfUrTvfVlWeXPW9+4R8e5yRWs9QnPTIt6+6TsQzYw+5Bz69BtQ7ZDMzMzMrBNJ+nGZ5seBA4F/SppQ1B4R8dU8/XZ18jQz245l2eeexgIzIqLcCNPMbD8lx8MHRSGQdADwF2A6sFdEvNUhEVu3FhHMvvtKFr85i5UP+ya1I1avdkhmZmZm1vn2r9D+EjCoZH8AK2zy9ApwEGlqHZJqgX1JFffKmQCcIKkuIgojUwcB75KyRyR9kpQ4PQzsGxGlz01ZL9Xw6G3Mf+o+hm3/OQauN671E8zMzMys24uITqm43aXJU0SEpEuBKyXNASYDJwGjgB8CSFoPGB0RD2anXQ18hbS+0/eBQjGIsyJicXbMz4Em4DvARiXPszwbEbM795vZiqjxlSeZ849fMHD9rRi27WeqHY6ZmZmZdXNdXi0hIq6WNJA0NHYKafRor4golB8/DziarIhERLwhaXfgCuB60vNM50TEZQCS1gE2zc69o8wlD8/Os15kScM7vP23S+k7fFVG7XcqUlfXRjEzMzOznqYqpeYi4nLg8gr7jgGOKWmbBmxX4fgX+aBanxmxpIm3b76EaFrE6CO+Q5/+ddUOyczMzMx6AP9zvPU4syf8jMWvz2DkPl+j36i1qx2OmZmZmfUQTp6sR2l44u/Me/wuhm59GHX/U3aw0szMzMysXZw8WY8x76n7mH3P1QxY5xMM3+EL1Q7HzMzMzHqYqjzzZNaRIpqZ+68/MveB6+i/1saMOvBM1Kem2mGZmZmZWQ/j5Mm6teamRt69/UcsmPEvBm+6Jyvt+WVUU1vtsMzMzMysB3LyZN3WknmzefuGi1j83+cYscsXGTLuYErW+DIzMzMz6zBOnqxbWvzm87x1w0U0N85j9CHnMugjW1U7JDMzMzPr4Zw8Wbez4NkpvHPbZfQZMJRVP/89+q08ttohmZmZmVkv4OTJuo2IoP6hG3hv4m/ot9pHWPmQ86gZPKLaYZmZmZlZL+HkybqFWNrEu3ddxfwn72XQhjswcp+v0ae2f7XDMjMzM7NexMmTrfCWLpjL2zd9h0WvPsWw7Y5k2HafdWEIMzMzM+tyTp5shdb0ziu8dcMFLGl4l1H7n07dRjtVOyQzMzMz66WcPNkKa+ELj/L2376L+tay6pGX0H+NDasdkpmZmZn1Yk6ebIXU8OhtzL53PLWj1mblw75J36ErVzskMzMzM+vlnDzZCqXp3Vd5b/IfWTB9EgPXG8eo/U+nT/9B1Q7LzMzMzMzJk3WOdc66vU3HL377JeZO+TMLpv8T9e3HsG2PYNh2R6I+NZ0UoZmZmZlZ2zh5sqpa/OYs5j5wHQuefQDVDmDoVocydNxB1NQNr3ZoZmZmZmbLcPJkVbHojZnMfeA6Fj73EOo3iGHbfIYh4w6kZuDQaodmZmZmZlaWkyfrUoteeyYlTbOm0ad/HcO2/xxDt9ifPgMGVzs0MzMzM7MWOXmyLtH46lPMnXwdjS8+Rp+BQxm+41EM2Xw/F4MwMzMzs27DyZN1mohg0cv/4b0H/sSil/9Dn0HDGb7zsQz5xD706Tew2uGZmZmZmbWJkyfrUE1NTTz66KPMfegGFs58kEWvTaembgQjdj2OwR/fiz61A6odopmZmZlZuzh5suWyePFiHn74YSZOnMjEiROZPHky8+fPB6DvSmsyYvcTGLzpnvSp7V/lSM3MzMzMlo+TJ2uThQsX8tBDD72fLE2ZMoXGxkYANt54Y4455hh23HFHTpu0mJrBI6ocrZmZmZmtqCQdB5wBrAk8DpwaEVNaOH5j4ApgK2A2cBXwvYiIzo82i6ELr7VCqquri8JIiS0rIpgzZw6PPPIIkyZNYuLEiTz00EMsXrwYSXz84x9nxx13ZKeddmKHHXZg1KhR75/b1kVyzazzvHjpvtUOwczMehFJCyKirpVjjgJ+DVwIPAx8BdgO2CwiXihz/MrAv4EngR8AmwPnA2dFxGUd+gVa4JGnXmrevHm8/vrrH3q99tpry3wujCrV1NSw+eabc/LJJ7PTTjux/fbbM3z48Op+CTMzMzPrdiSJlDSNj4gLsrZ7gBnAKcDJZU47kZS7HBARC4A7JPUHzpZ0RUQ0dUXsTp6qICKICJYuXUpzc/Myr9baFi1axMKFC2lsbGThwoXvv1r7PG/ePN544433E6SGhoYPxVVXV8caa6zB6quvztZbb/3++w033JDtttuOIUOGVOGnZWZmZmY9zPrAGOCWQkNENEm6Hdi7wjm7AxOyxKngZuBcYBzwQOeEuiwnT+0we/ZsVlllFSAlQsWKP1d631X69u3LwIEDGThwIHV1day22mpssskm7LXXXqy++urLvNZYYw0nR2ZmZmbWFTbIts+VtM8C1pNUExFLy5xzf5njC/ucPK2oBgwYwBlnnPH+5zTySNnPld7X1NTQp0+f97fFr3JthVf//v3fT4gGDBjw/vvSzwMGDKBvX//nNTMzM7Mu11fStKLP4yNifNHnodm2dCpUA9AHqAPqS/YNrXB8cX+dzn9dt8OgQYO4+OKLqx2GmZmZmdmKaElEbNnC/sKIQunUrEJ7c4VzKk3lKnd8p+jTVRcyMzMzMzMD5mbb0mdGBpMSoXKlsOeWOX5I0b4u4eTJzMzMzMy60sxsO7akfSwwo8K6TTMrHA+pSl+XcPJkZmZmZmZdaSbwCnBQoUFSLbAvMKHCOROA3SUVrx91EPAuaYHdLuFnnnqJ9i5a68U1zbq/5Vm02r8DzMyso0VESLoUuFLSHGAycBIwCvghgKT1gNER8WB22tWkhXTvkPR9YDPgbNIiuYu7KnYnT2ZmVpH/4cXMzDpDRFwtaSDwVdLCuI8De0VEofz4ecDRZEUkIuINSbsDVwDXA28C50TEZV0Zt5MnMzMzMzPrchFxOXB5hX3HAMeUtE0Dtuv0wFrgZ57MzMzMzMxyqMrIk6TjgDOANUlDdKdGxJQWjt+YNES3FTAbuAr4XnElDkk7AJcBmwCvAZdExK866zv0FsvzrISZmZmZWU/S5cmTpKOAa4ALgYdJD37dLWmziHihzPErA/cCTwKfBjYHLgaWkpIlJH0UuAu4FfgWsCfwS0n1EXF9p38pMzNbhp+VMjOznqhLkydJIiVN4yPigqztHlJt9lOAk8ucdiIpzgMiYgGpwkZ/4GxJV0REE3AW8CJwZDYadZek0cA3SQ+UmZmZmZmZLZeufuZpfWAMcEuhIUt+bgf2rnDO7sCELHEquBlYCRhXdMxtJQtq3QxsImn1DonczMzMzMx6ta6etrdBtn2upH0WsJ6kmohYWuac+8scD7CBpCeA1Sv0WTj/9XZH3An8HJGZWXndaU0qT000M+t9ujp5GpptG0raG0ijYHVAfZlzyh1f2NdSn8XXfJ+k44Hjs48haWGrkZfXF1jSznOt9/J9Y+3le6cF+m61I8inSnH63rH28r1j7TGw2gF0lq5OnpRto0J7c4VzSo8vaG5PnxExHhjfYqQ5SJoWEVsubz/Wu/i+sfbyvWPt5XvH2sv3jrWHpGnVjqGzdPUzT3Oz7ZCS9sGkJGd+hXNKjx9StK++pK24z+JrmpmZmZmZtVtXJ08zs+3YkvaxwIySgg/F55Q7nuycecAbLRzzbDtjNTMzMzMze181kqdXgIMKDZJqgX2BCRXOmQDsLqmuqO0g4F3SAruFY/aXVFNyzJMR8WYHxF3Jck/9s17J9421l+8day/fO9ZevnesPXrsfaPygz2deEHp/4ArgUuAycBJwPbAxyNilqT1gNER8WB2/GrAdOAJ4PvAZsAFwFkRUVgkdzPSgru3AT8nlS4/Ffh0RPy1C7+emZmZmZn1UF2ePAFIOg34KjCKNHp0WkRMyfZdCxwdESo6fkvgCmAL4E3g6oj4bkmfewHfBTYEXga+ExHXdvZ3MTMzMzOz3qEqyZOZmZmZmVl309XPPPUIko6TNFPSQklTJG1T7ZhsxSXpAEkNJW2SdI6klyUtkHSPpA2rFaOtOCTVSDpV0nRJ8yU9LekkScr2+96xsiT1k/RtSS9l984/JG1etN/3jrVIUv/sd8+1RW2+b6wsSSMlRZnX9dn+HnnvOHlqI0lHAdcAvwcOBd4D7pa0bjXjshWTpG1J94pKdn0TOBe4DDgCGAZMkDSsayO0FdB5wHdI980BwF+AHwGnZ/t971glPwROBi4FDgYWAPdJGpPt971jrfkW6fGHYr5vrJLNsu1ewDZFr7Oz9p5570SEXzlfpD+AXwR+WtRWC8wCflzt+PxacV5Af+AMYBEwG5hXtG8I0ACcWdQ2grRm2anVjt2vqt43fbL74KKS9quAt3zv+FXpRfqjZHHxfQAMJCVQ5/re8au1F/AJYB7wNnBt1ub7xq+KL+BrwH8r7Oux945HntpmfWAMcEuhISKagNuBvasVlK2QPkX6l5fTgZ+U7NuatIhz8X00B5iI76PebhjwW+DGkvYZwGhgV3zvWHnzga2AXxe1NQFB+scc/96xiiT1BX5Fqmr8WtEu3zfWkk2Bf1fY12PvHSdPbbNBtn2upH0WsF7JOlPWuz0MrBsRPyb98VKscB89X9I+q2if9UIRMSciToqIx0p27Q+8CqyZffa9Y8uIiCUR8VhEzJHUJ5tK/ivS75/f49871rIzgX6kZWSK+b6xlmwKDJL0gKRGSa9KOiN7RrfH3jt9qx1ANzM02zaUtDeQEtE60nCk9XIR8VoLu4cCiyJicUl7Ax/cY2YASPoSae26k/G9Y/mcB5yfvf9mRMyQdAi+d6yM7AH+c4DdImJxVpumwL9zrCxJfYCNSKPeXyctE7QPKQEfQBr57pH3jpOntin8RikdSSi0N3dhLNZ9iQ/fQ4V230P2PkmfIxWouZ60uPjZ+N6x1t0E3A/sAnxTUj9gIb53rET2B/AvgV9Gtt5m6SH4vrHyBOwHvBwRhRlZ90kaTBrJvJgeeu84eWqbudl2CGmx3oLBpBthfpdHZN3RXKC/pNrsmbmCwXxwj1kvJ+kU4HLSfPHPRURI8r1jrYqIwjMIEyUNIT17eSa+d+zDvkJ6lnu/7LmnAmWf/TvHyoqIpcA/yuy6C/h/pL+Je+S942ee2mZmth1b0j4WmBFZKRGzVswk/ctLaXn7saTCANbLSfoO8APgd8BhRdMefO9YWZJWlXRsliwVe4xUMGIOvnfsww4G1iBVhW3KXpsBRxV99n1jHyJpdUnHSxpdsmtgtu2xv3OcPLXNTOAV4KBCg6RaYF9gQpVisu7nAaCRZe+jEcBO+D7q9SR9lTQ97wrgmIhYUrTb945VMpxUIOKwkvY9SWXub8b3jn3YCcC4ktezwG3Z++vwfWPl9Qd+Bny+pP1Q0j10Iz303vG0vTbIps1cClwpaQ4wGTgJGEVanNCsVRExT9JPgG9Laib9kjmHVGzkF1UNzqpK0mrAd4H/kP5o2ark4e1ppNL3vndsGRHxjKQbgMuzZ5xmAYcAXwC+GBH1/r1jpSLiQyMAkhYC70bEtOyz7xv7kIh4QdKfgIuye2M6cDgpeTqoJ/+t4+SpjSLiakkDga8CpwCPA3tFxKyqBmbdzTdIz8l9nTT/9wHg6Ijo1vOAbbntRfrXvE2Acg9vj8b3jlV2FPAt0sjlasDTwOERcX223/eOtYfvG6vkf0nVPb9G+p0zHTg0IgprO/XIe0d+TMfMzMzMzKx1fubJzMzMzMwsBydPZmZmZmZmOTh5MjMzMzMzy8HJk5mZmZmZWQ5OnszMzMzMzHJw8mRmZmZmZpaDkyczsxWEpMclhaRxVbr++ZLmtXLMtZKebGO/O2ffa8vli7BiPNHC65oOuEZI+npHxFvUZ5t/jmZmVn1eJNfMbAUgaRNgU9LCpl8CHq5uRN3KLOBzFfa92QH9bwO81AH9FLsIqOvgPs3MrJM5eTIzWzEcDTwB/Ba4QNKpETG/yjF1Fwsj4sHO6rwz+o6I5zu6TzMz63yetmdmVmWSaoDPAncBfyaNSHy6aP8xkt6RtFs2tW+RpKclHVB0zIsVpq29WHTMXpImSmqQ1Jj1dUiZeD4jaUZ2zDRJ27bx++wj6TFJCyU9AKxb5pgtJE2QtEDS25J+ImlQ0f77JY2XdLekekmXtSWGMtcrTB08QdIbkl6RtE6270hJ/8m+7/OSvlJy7jLT9iTtImlq9v2eyn6uSyQdk+0/P/u5HSnp2azfh4t/jqXT9rKf2bTs5/GWpF9JWqkN+/tKulDSy0X/3XZbnp+ZmZl9mJMnM7Pq2wNYDfhDRLwOTCBN3Ss2BPgVcBWwH/AO8OeiP6APJk0vK7y+nLVfCyDpk8AdwJPAgcBngAXAHyWNLrrOIOBi4FvA4aRE7kZJuWYqSNoauAWYkcV0L/DTkmM2AiYBQUoSz8zi+UtJd8eSpuQdRkoqW7pu33KvMoeeBxwPfCMiXpR0NPBHYCJwAPAb4IeSTq9wnU2AO0nTAQ8h/Xz/AtSUHLoBcCFwPnAoMBD4a7mYJI0BbgQmA/sApwH7k/5bt7o/8/Os/QrgIOAZ4M62Jr5mZtYyT9szM6u+o4DHIqIwEvFb4HeSPhoR07O2fsDpEfEXAElvkqb57QLcEBGPFTqTNBL4E3A36Q94gI8BN0bEiUXHvQw8CmwF3FZoBj5fmKomqRa4AdgI+HeO73IG8CxwZEQEcJek4UDxaM55pORj34hYlF1nJjBJ0o4RMSk7rgE4OSKaWrnmx4Cyx2Q/w2eKmn4UEbdm+/oA3yElrSdl+/8uKYDzJF1dZurkWcCrwMERsYSUoDQDpSNjQ4DdI2Jqdq0a4G/AZsAjJcd+EugPXBoRb2THzwPG5NkvaUPgGOC4iPhFds5dklYDvg3sWu5nY2ZmbeeRJzOzKpI0hDQSdKOk4Vmi8Q/SqFDp6FPxszevZttlig5kf6T/mZQEfS4imgEi4tcRcbikOklbSvosUEik+hd1sRSYWvT5xWw7POdX2g64K0ucCm4oOWYX4O/A0qIRoilAPVA81ey5HIkTwPPAuAqvF0uOfbro/QbA6sDtJaNVd5KSn0+WudbOwG1Z4lTw1zLHLQGmFX0u+98r8wiwCJgq6fuSdgZuiYgf5dy/c7a9o+R73AFsL6lfmWuamVk7OHkyM6uuw0lT5S4C5mSv17K2o0r+8F1Q9L4525b+Hv8+sANweES8W2jMkqbfA++REpVvAAMKu4vObywkXK1cp5IRpCmFxf5b8nkkcAJptKj4NZQ0fbHgrZzXbIyIaRVejSXHFvc5Mtv+sSSOQqXD4lgKRgFvl7SVq+i3KO/PMSJmkZLGJ0gjdPcBr0o6OM/+ou/xWsn3uAyozWI2M7MO4Gl7ZmbVdRRppOfMkvaPAVeSRqVykfQ54BTgyxFRWur8J8CepGdmJkXEouzZo0olvtvrXWDlkraRJZ/nkqaw/ZQPK028OtPcbHsiy462FbxQpu11YHRJW+nnNouIycB+WdGM3UjTH/8qae2IeL2l/dn3CNKoX7mRuq78mZqZ9WgeeTIzq5LsD98dgd9FxP3FL+Aa0ohN6dS9Sn1tTioa8LuIKLcw7Dak6XT3FJ4zAvYunL4836PEfcD+JYUR9ik55l/AhsAjhREi4BXgUmDjDoylNc+Qkr01i0erSMneRcCwMudMAvbNnpcqyJ3gliPpS5JmSaqNiAXZM1nnkopQrNHaftLPU8CQku+xOymZXlL+ymZm1lYeeTIzq56jSCMGpc8EERFLJf2ZNE3rgZY6ySru3USaknaVpK1YNiF6jDQV7YCsutzLpCIChYpyg+g4F5Oe9blZ0lWkhX9PKjnmItJ3+oukX5GmD54HrJXF2lYDsyp/5TRGxOPldkTEEknnAz+QBKnK4brAJcBMyo88XQo8Dtwg6Wek56YuyvY1lzk+j0mkkcG/SrqaVBzk3Oz6j5NGliruj4gmSTcAv8++z3TSc1DnAt8rmT5oZmbLwcmTmVn1fB6YXKigVsYfgK8CX2yln02BtbP35RZ0XZdUxnog8KOsbTqp1PYPSaNSv8kddQsi4ilJe5Cet7mRVLL8ROD3Rcc8ImlXUqJ1A9BIKsP9hYh4rR2XHUt6jquc54H1W4j3SkkLgFNJP6N3SQUgzikpelE4frqk/YHvkaYeziSN7vwSmNeO2ImIZ7M+LwSuz5rvIxX8aAJa2w9p+uWFwNmkaZMvkSoDLtf6WGZmtiyV+X+DmZmZlSFpd6AhIh4qatuTVBZ+s4jIU87dzMy6KY88mZmZ5bc1cLqkr5NG1caQRnwmOXEyM+v5PPJkZmaWU1YI41vAZ0nFGmaTnjc7OyLqqxmbmZl1PidPZmZmZmZmObhUuZmZmZmZWQ5OnszMzMzMzHJw8mRmZmZmZpaDkyczMzMzM7McnDyZmZmZmZnl8P8B7Gb3BgnuZxcAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "lambdas = [2.5, 7, 12]\n", "\n", "fig, ax = plt.subplots(nrows=len(lambdas), figsize=(12, 16))\n", "for e, _lambda in enumerate(lambdas):\n", " x = poisson.rvs(_lambda, size=2000)\n", " bins = max(x) - min(x)\n", " ax[e].hist(x, bins, density=True)\n", " ax[e].set_xlabel(\"Anzahl der Ereignisse\")\n", " ax[e].set_ylabel(\"Wahrscheinlichkeit (P=X)\")\n", " ax[e].set_title(f\"$\\mu$ = {_lambda}\")\n", "\n", " x = np.linspace(0, 50, 50)\n", " cdf = poisson.cdf(x, mu=_lambda)\n", " ax2 = ax[e].twinx()\n", " ax2.set_ylabel(\"Kumulative Wahrscheinlichkeit\")\n", " ax2.plot(x, cdf, color=\"k\")\n", "\n", " ax[e].set_xlim(-1, 50)\n", "fig.tight_layout()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.2" }, "vscode": { "interpreter": { "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" } } }, "nbformat": 4, "nbformat_minor": 5 }