{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "a12d5bd6-a5a0-447e-b1fc-6b5890aafb8a",
"metadata": {
"tags": [
"remove-cell"
]
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"---------------------------------\n",
"Working on the host: Joachims-MacBook-Pro.local\n",
"\n",
"---------------------------------\n",
"Python version: 3.10.2 | packaged by conda-forge | (main, Feb 1 2022, 19:30:18) [Clang 11.1.0 ]\n",
"\n",
"---------------------------------\n",
"Python interpreter: /opt/miniconda3/envs/srh/bin/python\n"
]
}
],
"source": [
"%matplotlib inline\n",
"# Load the \"autoreload\" extension\n",
"%load_ext autoreload\n",
"# always reload modules\n",
"%autoreload 2\n",
"# black formatter for jupyter notebooks\n",
"#%load_ext nb_black\n",
"# black formatter for jupyter lab\n",
"%load_ext lab_black\n",
"\n",
"%run ../../src/notebook_env.py"
]
},
{
"cell_type": "markdown",
"id": "a148528b-dd09-4f83-b845-73e8ca7d43bc",
"metadata": {},
"source": [
"# Inferenzmethoden in Regression und Korrelation"
]
},
{
"cell_type": "markdown",
"id": "91fafe7e-d492-45b3-aa26-b14bde9f09df",
"metadata": {},
"source": [
"Das lineare Modell ergibt sich aus der Gleichung"
]
},
{
"cell_type": "markdown",
"id": "9e979fa0-e922-43b0-b3d0-df72e48bd7b2",
"metadata": {},
"source": [
"$$y = \\beta_0 + \\beta_1x+e\\text{,}$$"
]
},
{
"cell_type": "markdown",
"id": "021de81f-9c40-4271-b186-2519a6746b54",
"metadata": {},
"source": [
"Wobei $\\beta_0$ der Achsenabschnitt, $\\beta_1$ der Regressionskoeffizient und $e$ der Fehlerterm ist. Die beste Regressionsgerade wird durch Anwendung der Methode der kleinsten Quadrate gefunden, um die **Summe der quadratischen Fehler (SSE)** zu minimieren, d. h. die quadratische Differenz zwischen der gemessenen Reaktionsvariablen $y$ und der Modellvorhersage $\\hat y$ zu minimieren, die wie folgt lautet"
]
},
{
"cell_type": "markdown",
"id": "547f54c1-d266-4b56-a638-316fc023a29e",
"metadata": {},
"source": [
"$$SSE = \\sum_{i=1}^n e_i^2=\\sum_{i=1}^n (y - \\hat y)^2\\text{.}$$"
]
},
{
"cell_type": "markdown",
"id": "2aec0788-8216-4f41-ae2f-e3442d7baa14",
"metadata": {},
"source": [
"Im Abschnitt über die *lineare Regression* finden Sie weitere Einzelheiten zum linearen Modell.\n",
"\n",
"Wie auch immer, wir müssen anerkennen, dass wir unsere Modelle, in diesem Fall unser lineares Regressionsmodell, auf Beobachtungsdaten aufbauen. Die Daten stammen also aus einer Grundgesamtheit und deren entsprechenden statistischen Eigenschaften, die uns im Allgemeinen unbekannt sind. Jede Beobachtung stellt also eine Ausprägung der Population dar, die mit dem Begriff Zufallsvariable bezeichnet wird.\n",
"\n",
"Betrachten wir ein Beispiel, wie es in der folgenden Abbildung dargestellt ist. In diesem Beispiel sind die Parameter der Grundgesamtheit bekannt, so dass wir ein lineares Regressionsmodell der Form $y=β_0+β_1x=1+0,25x$ erstellen können"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "bc52f417-b201-43bb-a44e-f97242518700",
"metadata": {
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Grundgesamtheit')"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEeCAYAAABv8mXfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABCW0lEQVR4nO29eZxU5ZXw/z29AN2gNggqtLIEEBJEQRBBNHGJQlSk2mg0MetkxkkyWfT1RwZjJpoZM5KYxEzyJvnFTIxZTGK2LkCIW3DXJoKAKwiKCA0Cio1IN9DL8/5xbzXV1Xeture2Pt/Ppz7dVfep55771L3nnnue85wjxhgURVGU8qSi0AIoiqIo8aFKXlEUpYxRJa8oilLGqJJXFEUpY1TJK4qilDGq5BVFUcoYVfKKoihljCp5RVGUMqaq0AIowRCROuA0YEba3+H25keMMWfHsM/jgS8B84CRQAewGWgEfmSMeTvqfUaNiNQCF2KN2XSs4xgKDAL2AhuAB4CfG2Oac9jPNOBDwJnAJOAYrPF6A1gJ/NoYc28xyKr0LURXvJYGIrIZGO2yOXIlLyJzgd8DdS5NmoH5xpjVUe43akRkOvB0gKb7gX8zxvwqi308Arw/QNNlwFXGmL0u/cQuq9L3UEu+dJC0/3diKYOLY9mRyMnAn4GBQCvwbeDvWOfLfODLQD1wj4hMM8Zsj0OOCNkBPASsBrbY7zuxjuEi4GNYx/pLEdltjFkesv96++9OrHF71N6PwbLIrwHG2/taIiLnGGO6CiSr0tcwxuirBF7A/wd8GBiZ9pmxXw9HvK8Vdr8dwPsdtn88bd93RLjfT9t9vhZhn5UB2swADtn7fiaLfdwDXAlUuWwfCDyRNmYfL5Ss+up7L3XXlDAikvrxInPX2L7lVfbbXxhj/tml3d+Bc7GszBHGmF0R7PvTwC+BLcaY0bn2F3Lf9wJz7LdHGGPejbj/ycCz9tslxpj5OfQVq6xKeVG20TUi8pqIGBF5MkDbY0XkHbv97fmQr4i5NO3/X3i0u8P+WwlcEp84eWNf2v/9o+7cGPMc8Jb9dlyO3XnKKiK1IrLdPp93iEiNUyciUiEijXa7LhH5WI5yKUVI2Sp5oMn+O1VE/OYe/hs4AngH+HqsUhU/Z9p/W/GeBHzI4TsliYgMA86z375pjHnLq30OVNt/O7PtIIisxphW4L/st8cBX3Dp7odAwv7/q8aY32Url1K8lLOSf8r+OwA4ya2RiJyK5QsG+FYUbocS5332343GmA63RsaabH0n4zslg4gMEJH3iMjVWOfKYHvTD2La31TgSPvtSyG/m42s/wu8Yv//VREZmNHnvwP/lurHGPPdMDIppUM5K/mmtP9neLT7AdY4vAr8T5CO7cfbXF83ZX1kMSEi/bHisgG2BfhKqs0J8UgULSJycWr8gTYsJfgzYKzd5E7g1ph2n/6EeLdf41xlNca0A9+w3x4DfDGt76uAW9Jk+T/BDkEpRcpZya8BDtr/n+bUQEQ+Apxlv11gjDno1K4PcUTa/0Em81JtBsUgSz7ZBJxnjPmMMeZQ1J2LyBUcnutYhbWYLFvCyPp7YJ39/wIRGSQi52FNbguWy+2TRqMvypqyjZM3xhwSkWeAWTgoeREZAHzHfvuIMeavIbqfHIGIxegWSp+gC6LsUjdFx4m9IuQRDv92/YFRWJPGHwd+IyI3GGPujHKH9pqD1AR2K/CJgEo1Z1mNMUZEvoa1COto4MdYPvhqrEifhjhuakqRUegYzjhfwPex4onbgdqMbV+3t3UCUwsta5bHF2mcPJarJtXnHwK0X2m33ZeFzLm8bop4HM8DDth9fyPCfkdjubRS59llhZAVa3FW+vhtwQp7Lfg5rK/4X+XsroHDk69VwNTUhyJSDyy03/7SGLMm34IVKemheUFcMKk2JR2nbYz5O4fnY24UkYm59ikiw7HyzKRWw/6rMebPufabpaw/S/t/HzDXFP8qZSUiytZdY5M++Xoa1qpDgEVYqxD3ATeE7VREXKN1QrDLFFkkjzHmoIi8iWXRHx/gK6k2W0PsxsvVNR+4GdjO4cU+TsQxbouBr2LNU12KFVabFSIyFEvBp+LhrzXG/G/OEh4msKwiMhIrLUWKGqwnW6WPUNZK3hizVUSasayp0wBE5HTgKrvJfxtjdmbR9XMRiPdN4KYI+omaF7GSbY0XkSrjEkYpIiM4HBL4YtDOjTHPu22zE3QBtHu1i4ndaf+PyrYTO1vo/ViZKAH+wxjzg+zFciSQrCIyGLgX6/x/G2tivQr4T6wcOEofoNzdNXDYmp8hIoIVMilYKXNvK5RQRczj9t9aXKKSbM52+E4pU5/2f1buJxEZBPyNw67Bbxtjbs5VMAd8ZbUDC5YC78Xy4V8C/NrefKWInBKDXEoR0peU/DisWOGZ9vuvmixDJo0xEsHrpgiOLQ7So4w+69Hun+y/ncCS+MTJG5en/R/6Sc1OHbCUw+fXj4wxCz2+kguesopIBVb45GygCysh2uNYq2DbsYycb8Ukm1JsFHrmN+4X1omeiipIZe97tNByRXRsoaNr0r7zmkeb9CyUZzlsvyqtn2LPQvkJYJBPm4/Yx2qAFmBImLED+gHL07b/L3athkLICvwkTZYvZ2z7adq22YU8f/WVn1fZZ6G0H1vf4XDekC7gNGPMM4WTKjwiMgWYkvHxL+2/G7Amk9O51xjzhkM/qR/cNdOjHdv9JIfzyS+iZz75r2AlJtsJnGoiitSIIwuliKwFxmAtQHoU2Ih1PgwEJgKXYVV0Akvxfca4FONwGzsR+TNWGmiwIro+h3WeuWIc5hyikFVEvs7hvDW3GmO+mrH9eKwFVf2Bx4wxQYqdKKVMoe8y+XhhJdqK3PLM8zHclHYMQV5nu/Tja8nb7eZiTda59b8NmBbxMX46iGwh+1wbcLzeAj7m05ebJR861j8OWYHPpLX5HS5PE1ghmKl2Hyr0ua2veF99wScPlsUJ1iRV6JDJvoix6pFOxsqP8hJWybl3sJbJ3wRMNkVe+s8mlYTrd1hKdAeWX3o/1qKgpXabsabwWRjnY82D3EVPWQ/aL1dZReRDQCpN9sPAp40xRkSuEpH7M/ZzC9YTGsC37IAEpUzpC+6aSVhLuCuAG4wxWcc/K9khIlcC12JlA92PFdn0K+CnJuYTUERG2/urNh5ZNYsFJ3ltN9Y/G2NyTulsu5zGG2M25dqXUhr0BUv+21jHuRkrzYGSR0TkOiz3wK1Yuc2PxfJZz8aasMxsX5lXARWlzClrJW+nVL3IfvsVY8yBQsrT1xCRo7AW3nzBGPNnY8w+Y7HGGHOVsVbY3ikiPxWR5SKyHzhHRB4WkX9O6+fTIvJ42nsjIp8TkY0i8raI/DjlchCRShH5roi8KSKvcvj3T313jIg8KiL7RORB+7u/Tds+U0SeFJEWEVknImdnyPGq/d3N9vmFiIwVkRUi8pa937vsRVGp770mIgtE5FkR2S8ivxCrGtnf0uRI5Yh/1P7bIiLvisistH6+ax/vZts90z3Odp87RKRZRG5O3SzTx05EUn2vs/u+IuxvqpQghZ4UiPKFtYBnHNZilBs4nMjpt4WWrS++sCZvO3ApcG23uRPYi2XZV2AVeXkYyz2RavNp4PG09wareHYdMBJrBehce9vngPVYOe6HYKXTNSkZsKJfvov1FHEm1jzDb+1t9ViTmhfaspxvvx+GFeHyDjDBbjscmGT/P85u299u+yhWIY6UvK9hrdc41t7HLuAZ+zztjxWyeqPddnS6vGnH3w78C1ZU0+exUj+k3K1JrPw0A7Fyx/8DK1eO29iNK/S5oa/8vcrNkv8UVtjZM1g5UPpjTRR+rpBC9WGGYpWo6/aFp1nJbSKSCt9bbIx5whjTZYI/bS0yxrQYY17HUuRT7M8/gqVgtxpj9nC4OEYqj8tpWNkbDxlrgVD6Qq6PA8uNMcttWR7Ayv9+ob29CzhJRGqMMTuMMS8AGGM2GWMeMMYcNMbsxnILfiBD3h8ZY3YaY5qBx4CVxnqiOYgVMjkVb7YYY35ujOnEms8YDhwrIsdihVVeY4zZb6x8SLcBVwYZRKX8KTclf6r99yDwMlbipg8YrWZfKN4ChkpajV1jzBnGmDp7W+r8C5PgLEX6GoBWDmfEHJHR35a0/0cAe4xVAzVFettRwOX2TahFRFqwrP3hxpj9wBVYBsMOEVkmdgZIETlGRP5gu0reAX7L4QpbKdJzJLU5vPfL+tl9vGnyD7JlrrZlSsn8MyyLXlHKS8kbY/7FWCkDBhhjJhhjbjDG7C20XH2Yp7BuuPN92mVG2OzHcr2lOC7EPnfQsxzhyIxtQ0Qkve/0tluB3xhj6tJeA40xiwCMMfcZY87HsqLXAz+3v3eLfQwnG2OOxHoiyDYsMWy00VasMR6aJvORxphJfl9U+gZlpeSV4sIY04KVbfMnInKZWOXnKuzVuwM9vroWuFREakVkHN45dDL5I/BlETnenszszh9jjNmC5X65SUT62ZOa89K++1tgnojMsSdwB4jI2XZfx4rIJWIVxD6Iteai0/7eEfb7FrFqFSwIIW8mu7HcQu8J0tgYswMr6+X3RORIe3zHikimuyjFzqB9K+WBKnklVowx38EqFP1VrAnHnVjuhH/HSp3gxG1YeYZ2Yvmf7wqxy58D92HNxTxDz4RrYOXdmYXlLroZq5D1QVvWrVhPHV/DUrZbsRR2hf26DmvCcw+Wz/0Ldp/fxHIV7sUqtRemlGQPbFfMt4AnbPfLTL/vAJ/Emkh+EWuV8p+xnjacuAn4ld33R7KVUykdyn4xlKJ4ISJ3A+uNMTcWWhZFiQO15JU+hYicZrszKkRkLpblniywWIoSG2VdGUpRHDgOy51yNFaStc8brfGrlDHqrlEURSlj1F2jKIpSxhSVu2bo0KFm9OjRhRZDURSlpFi9evWbxphhTtuKSsmPHj2aVatWFVoMRVGUkkJEtrhtU3eNoihKGaNKXlEUpYxRJa8oilLGqJJXFEUpY1TJK4qilDFFFV2jKIoShuSaZm69bwPbW9oYUVfDgjkTSEytL7RYRYUqeUVRSpLkmmau/+tztLVbGZ+bW9q4/q/PAaiiT0PdNYqilCS33rehW8GnaGvv5Nb7NhRIouJElbyiKCXJ9pa2UJ/3VVTJK4pSkoyoqwn1eV9FlbyiKCXJgjkTqKmu7PFZTXUlC+ZMKJBExYlOvCqKUpKkJlc1usYbVfKKopQsian1qtR9UHeNoihKGaNKXlEUpYxRJa8oilLGqJJXFEUpYyJR8iJyh4jsEpHn0z67SUSaRWSt/bowin0piqIowYnKkr8TmOvw+W3GmCn2a3lE+1IURVECEomSN8Y8CuyJoi9FURQlOuL2yX9RRJ613TmDnRqIyNUiskpEVu3evTtmcRRFUfoWcSr5nwJjgSnADuB7To2MMbcbY6YbY6YPGzYsRnEURVH6HrEpeWPMTmNMpzGmC/g5MCOufSmKoijOxKbkRWR42tsG4Hm3toqiKEo8RJK7RkR+D5wNDBWRbcCNwNkiMgUwwGvAv0axL0VRFCU4kSh5Y8xHHT7+RRR9K4qiKNmjK14VRVHKGFXyiqIoZYwqeUVRlDJGlbyiKEoZo0peURSljFElryiKUsaoklcURSljVMkriqKUMZEshlIURelrJNc0c+t9G9je0saIuhoWzJlAYmp9ocXqhSp5RVH6FFEo5+SaZq7/63O0tXcC0NzSxvV/fQ6g6BS9umsURekzpJRzc0sbhsPKObmmOVQ/t963oVvBp2hr7+TW+zZEKG00qJJXFKXPEJVy3t7SFurzQqLuGkVR+gxRKecRdTU0O3xnRF1NqH7y4ddXS15RlD6DmxIOq5wXzJlATXVlj89qqitZMGdC4D6ich35oUpeUZQ+QxTKGazJ1VsunUx9XQ0C1NfVcMulk0NZ4fny66u7RlGUQJRKyKAXKXmjOI7E1Pqcjj9ffn1V8oqi+FJKIYN+5KqcoyIqv74f6q5RFMWXUgoZLBWich35oZa8oii+lFLIYKkQpevIC1XyiqL4ki/XQl8jH64jddcoiuJLvlwLSvSoJa8oii/5ci0o0aNKXlGUQBRLVIoSDnXXKIqilDGq5BVFUcoYVfKKoihljCp5RVGUMkaVvKIoShkTiZIXkTtEZJeIPJ/22RAReUBENtp/B0exL0VRFCU4UVnydwJzMz5bCPzdGDMe+Lv9XlEURckjkSh5Y8yjwJ6Mj+cDv7L//xWQiGJfiqIoSnDi9Mkfa4zZAWD/PcapkYhcLSKrRGTV7t27YxRHURSl71HwiVdjzO3GmOnGmOnDhg0rtDiKoihlRZxpDXaKyHBjzA4RGQ7sinFfiqIoRUshq2rFackvAT5l//8pYHGM+1IURSlK8lWw241ILHkR+T1wNjBURLYBNwKLgD+KyGeB14HLo9iXoihKXERhcWf20Xqow7WqVj6s+UiUvDHmoy6bzouif0VRlLiJoo6tUx9u5KuqVsEnXhVFUYqBKOrYOvXhRr6qamk+eUXpYxRyErCYiaKObdC2+ayqpUpeUfoQUbgkipEoblxR1LF166OuppqB/asKcmNVJa8ofQgvl0SpKvmoblwL5kzo0Q+Et7jd+rjpkkkFG19V8orSh4jCJVFsRHXjyqaOrdMTxC2XTs65jyhvCKrkFaVEyUY5ROGSKDbcblDNLW0k1zSHVvTp7ZNrmpm9aIXjGLs9Qdxy6WSeWHhud5tb79vAtXevdfyN8uE+UyWvKCVItsohCpdEvkgpyOaWNipF6DSGegdF6XbjAnJSmH5j7PcEEeQ3yof7TEMolT5Dyiobs3AZsxetyNuKwzjINtwvMbWeWy6dTH1dDQLU19Vwy6WTfd0J+R639FWiAJ3GAM6rRRfMmUBNdaVjP2FDINPxG2M/11eQ3ygf7jO15JU+QblFleSiHDJdEl4Uaty84s0zLd3U32vuXuvY3mtMvFxefmPs5/oK8hvlw32mlrzSJ8hloUsxPgG4KYGofetRLBDKBr+bVeb2xNR66l2O3YDj7+aXU8ZvjJ2eINJdX0F+I78+okCVvNInyNbyLXRyKTfyoRygcNE4fjcrp+1ebhun383vBuY3xn6uryC/UTbus7Cou0bpE2T7WFysceXZhPtlQ6GicZwmiFO43czSx8RJ5szfze8GFmSMvVxfQX+j80+so2tzC8uWLeMn3/wJ/fv3d+wvW1TJK32CbKNKijmuPIxvPVsKFY2TqbC9omucvhfEPx/kBpbrGLt9f/fu3dxzzz00NjbywAMPcODAAQAuv/xy5s7NLJedG6rklT5BtpZvOcaVhyFfTwxu+84mzW9qYtiJTH94Pm9gmzdvJplMkkwmefzxx+nq6urVJplMqpJXlGzJRmmUUlx5XOTjiSEqvKJynPzhqe/kegNzitKZP2UE69at61bs69atc/3+SSedRCKR4PLLoy+7IcaOPy0Gpk+fblatWlVoMRSlB5q1MXfiHMP0vr202Q+umJLTPt2OIT3M1HR1cnDbixx6ZSXV21aza/tWx75EhNmzZ5NIJJg/fz7jxo3LWi67v9XGmOlO29SSVxQfSsmSLUbijLXP7NuN+rqanBW82zEsuudZ3nrxKVpffoq2V/5BV9s7jn3069eP888/n0Qiwbx58zj22GOzlicMquQVRYmVKCOU0lMdCHha7imicK9lHkNn2z52P/8PPtv4Ld5++WlM+0HH7x111FFcdNFFJBIJ5s6dyxFHHJGTHNmgSl5RlFjJJkLJyTUC9LCm/RS8QGSuoe0tbXS8s5vWjU20bXyKA68/D6b3xClA5aAh1IyfycipH2DNT6+hX79+Oe07V1TJK0qZUixzCWEjlNxcIwOqKwKX1quvq+nOBJktxhheeOEFkskku3/7G/Y3v+zatt/RJzBg/OnUjp9Fv+Hjqe1XTcO0es75/uMFH39V8ooSA4VWsIXIOeN2zGEjlNzcO0EVfC7umc7OTr7z66X831/+nl3PPUZHyw7Xtv2GT6D2xFmMPvUD3PiJ83sc+zkTh/GX1c1FkStJlbyiREwxJEPL1Q8e9iYVNK1ukP5yWWhWKRI6LcCBAwdYsWIFjY2N/OmvSfbuedO5YUUVA0adTO34mdSMO52qI44GoIXek/OzF60ompXSquQVJWKKIRVCLoU0srlJ+R1zmAglrzqpBzu6XC366krh1stOCVSFadvON+m/Yx3D9jzLs089zLvvvuvYXvrVUPOe6dSf8n4GT5zBzgO9c+M4uZ28xt+tCElcqJJXyoJCu0fS8ZtozIesuRTSyOYmFWX6h3MmDuOuptd7TKym6qSm5MuMrhlcW82N87zrqP7ivlXc8D93svelJznw+nPQ1cFGh3YVtXXU2v71AaNOQaqqaQeunz8lsNvJbfwFuj/P1xOeKnml5CkG90g6XhON+ZLVK8FXrgrb6SaVTfoHtwiav6xu7qHgBfjwtMNPAmHGaf369d0rTleuXOnabty4cTQ0NPC3fSfwzhGjkIqeFvuItDj7IDdop/F3CvnMxxOeKnml5CkG90g6XhON+ZLVL1GXl9smm5vUh6fV95hoBEupnTNxmOP+w0TQGOCh9bv9DhmArq4unn76aZLJJI2NjWzY4J73vt9x46kdP5Pa8TN5+X8/j4hwhsPiqsz0wkF+J6cbgtuTldvnUaFKXil5ii1TpJfFd20W1YtykcMt7S64u22yuUn9tul1aqp7lqcwWFb59FFDeu0jbASN1/gcOnSIhx9+mMbGRhYvXsyOHS4RMRUVDDhhMjW2Yq860roB1dfVICJAtPlsnCZj3Vw4YQuOh0GVvFLyFGOmSDeLLx+yprtBjqqpprpSaO/svXTI7Qkim5uU1V/vxUFu+wh7U8scn3379vG3v/2NZDLJsmXLeOcd51QCtbW1zJ07l0QiASdM5b//vs3Xpx5XGosFcyZw7d1re7lsDMT61Bm7kheR14B9QCfQ4ZZER1GyJY5MkXFNjsad1TLTDdLS1k51hbi2d1O2YW9SXjjtI0wETWp8du7cyZIlS0gmkzz44IMcOnTIcX9HH300l1xyCQ0NDXzwgx+kpubwDeKIowYXbII+MbU+qzq0uZIvS/4cY4xL8Kmi5EbUOc/jnByNOz+7kxukvct0F93IJOwThNeErhupfaTfOAdUO1ceFbEmWR9av5vtLW0M7tjDyQdf5rtfupknn3wSt6y5o0ePpqGhgUQiwRlnnEFVlbNqK3SyuXqXm9tRNdWx7TP2VMO2JT89iJLXVMNKMeDmO41iqXzcjFm4zDWnS011ZS8LOZt6oulJwvxI7QMIdHMwxnBo5yuYzSvp1/wMW19xnzidMmUKiUSCRCLBySef3O1X95K50CG2yTXNLPjTOtq7ev5KQWL8vSh0qmED3C8iBviZMeb2DOGuBq4GGDlyZB7EURRvim0iNyjJNc1UuFjsqbJ5UU4oOqX5ra4QBg2ooqW1vcc+nFaApjCdHRzY+jxtG5to3dhE5z5ne7CiooKzzjqrOwf7mDFjAslbTCG2ian1fHPpC7zd2t7j8/ZOE5tfPh9KfrYxZruIHAM8ICLrjTGPpjbaSv92sCz5PMijKJ4U40SuHylF5qTgUz7tqF0VYVxPmTfIrkMHOLD5GVo3PkXbK0/TdcB5xWlFVT8uvnAuDQ0NXHzxxQwdOjS0nPkKWw36tNCSoeBTxGVExK7kjTHb7b+7RKQRmAE86v0tRSkchSj5l6s7wa3sXdhcLmHlCHrjGFFXw+vb36Bt0z9o3djEgdfWYDqcJ04rBgyiZuxp1J44i5rRp7L4+x8OJLvbcbhZjulKNdfxD/O0kG8jIlYlLyIDgQpjzD77/wuA/4xzn4qSK/kuXh2FO8HNCuwyptu14nc8TnJce/daVm3Zw82JyVkd2+bNm1m8eDEtf/oD29Y87Z6D/Yhh1J44k5rxMxlw/CSk0lJN9VkovqDVotInhMOMv9NYuj0tXHP3Wm69b0OP8c63ERG3JX8s0GhPiFQBvzPG3BvzPhUlFG4KMI4apE4KNgp3QhSpFJzkMMBdTa87LmhywhjDs88+S2Njo2/x6gHHjKb/2NM5ZvJZVA4bQ1tHT5s7W8XnVcw7Rfpq3DDj7zaWXvvLHO98GxGxKnljzKvAKXHuQ1FyIe5JuSD95zLR61UOL2wqBbf9+S3W6ejo4IknnujOEfPaa685thMRzjjjjO6ImMzi1VFFwAQZt/TVuEHG3yuiqK290zVENb1N+hjmM5RTV7wqfZq4J+WC9J+tjzbzBmI4nASrvi58KgWvhU6Zbdva2njggQdIJpMsXbqUN990joiRympOnXUWn/vUR32LV0el+IIu2Er9Dm7tj6qp7g6n9asn22lMrxDVTAoVneW8IkFR+ghxh0sG6X/BnAnUVPfMephKSTt70QqSa5od+3Bzr6Ti+dNvIk5kfr5gzgTcIs1H1NWwZ88efvOb33DppZcydOhQ5s+fzy9/+cteCr6ify217/sAQ+cv5Pgv3cX+sxcwdNqHPBV8lDiNpxvbW9oc21dXCPsPdXQrf7+wv/q6Gm65dLLnHEKhorPUklf6NHFHOgTpP91Hm2k1ermPgt6ggk70JabWs2rLnh653Dve2U3bxiae2fgUR9/wPHQ5T5wOHz6cRCLBIwdG8+7RJyKVh1dw5jsjqJPPu/VQR6/YdHBPIezW3onMEFWnid+4o7O8UCWvRE6xrC4MQtyRDmEUbGrRUOZNwU1JBr1BhZno+6/5JzGsfRff+/ld7HzuMQ69scn12CZOnNjtXz/ttNOoqKhgzMJljk8D+XZVZLp+/BRvZvsxC5cF2k+9w1jme2LVD1XySiCCKu5iWl0YhLgvyLD9e5WNG7NwWXeR6IfW7/acbHWSw22fnZ2dNDU1dU+cbtrkrtj7DZ/AcSefxX0/uI6JEyf22l6sC8nC/g5+fn2/lBCFzpGTTuy5a8KguWuKEzcryOkkL+W8L8XwBOI2fl44Tbb6kSpenUwmWbx4Mbt27XJu6FC8WoDNiy7qbpKZ2nj/oY4eqY2zzZETFdn8rk7nfDbjnKscQSl07hqlRPELGwuTJ7zY8758PflcD190oZ5AssnymD7Z6sXevXtZvnw5yWSS5cuXexavHjLhdAZNmElX/RQqBgzqsT3dKndLbTy4trpX/ppCkO2TZSllNvVDlbziSJBVg2HyhBf6cd2L5JrmXoWjIfyEYRSWWqr9dX9c5xl3nYnrzXX7dhYvXkwymeShhx6ivd15MvGoIUNh1HT6jz2dAaOmIFXVVh56oZdVnu4OckttXNuvijXfuACwxmX2ohUFeULKJUQ2SpdLIUtUqpJXHAmyatBJcRci70uu3HrfBtcQuVQYY5xzEU43h66QbtT03yJo8eqxY8d252Bf8Egr29/pmUumvctQV1PNwP5VNLe0USnSrZhSxxWk6Hch52iyfbKM2rVSyCdcVfKKI34nn9cEHxRPZEEQvI41Fa8O3goqW0vNTQnW1VYHDuHDdDF/xH6uv/56kskk69evd206bdq0bsX+vve9rzsH+46lztEke9vauemSSa6K2u/JrdBF1rN5sozjxlTIJ1xV8oojXtEFfhNPxRRZEASvYw3qwglqqWVOUr5zoJ2M+hG0tXfSv6rCc5Wl6WznwOvP0baxCbNlFf++x3nitLKykg984AM0NDQwf/58TjjhBMd2XkrIS1H7PbkVeo4mmyfLOG5MhXzCVSWvOOJ2UkYdJVEMES1Ox+qlYLOdi3CapHRjb1s7V80c2WOuoOtgK4dee4aDrzSxd8M/MIdaHb+bXrz6oosuYsiQIb3aZI77OROH8ZfVzY5KyCstgt+TW6HnaLJ5sozjxlTIJ1xV8n0cvwyMcZ6UhfbXpnA7VrfIomznIoLMc6Tv4+bEZMYN6uTmn/yG7ese5cCWdZhO5xtDqnh1IpHg/PPP71G8OhOncf/L6uYetVXTf2+/cfB6ciuGOZqwT5Zx3ZgK9YSrSj4misFC9cNPycZ9UhbaX5uO27EGVVBBbopBLcHKfTsZf3AzZ575jUiKV2fiNu4Prd/tGIaZi6KO0ljI1zVVDDemKFElHwPFYqH6kU8l63SBFtpf60dYBeV3U3SzEFPFq9teforWTU20797Cqy59nHLKKd2K3a94tRthxz1XRR2FsZDPa6oUgwe8UCUfA8VkoXqRLyUbNoKkmGLqo3yaSbcQTWcHB7a9YCn2jSvp3Lfb8TvZFq/2Iht3RFxPdUGt83xfU6UWPOCFKvkYKHYLNUW+JsXcLtD+VRW9cnCX8mOxH+efWEdT3TbuuOuPvPXSU67FqwcMGMAFF1xAIpHg4osvZtiwYZHKUSzuiDDWealcU8WIKvkYKHREQVDydbG7XYh729q57YopeX8sjqJoc2ZkitOEJcCbb77J0qVLSSaT3H///Rw4cMCxz8GDB3PxxReTSCSYM2cOAwcOjORYncjXpLpf/2Gs81K5pooRVfIxUCyWkh/58j16XaD5fizO1bfr9P3fNr3evb25pY3rfvEASwds4ZVVD/HYY4/R5ZKD/fjjjyeRSNDQ0MBZZ51FdXW1Y7s4iHPcg45xGOu8VK6pYkSVfAyU0sRN6mJPWV7XOlSXz5W4L9Awlnmuvl3HakzG0L57M60vN9G68Snad212nTg96aSTunOwn3rqqVlNnBY7Qcc4jHVeStdUsaFKPiZKaeImjHWbjasjzgs0rGWeq2831c50dXKw+SVaX36K1o1NdO7d6dg+vXj1/PnzGT9+fKD9FDte50EuFauqK4TWQx3dufPT+y2la6qYUCWvBLa8cnF1xHWBusl+3R/Xce3dayNdgdnW1saA7WvYuvYR2jb9g662d5wbVlZRN24a37nus8ybN4/jjjsu/IEVMX7nQbYVq1K56FMRV/kKPS6FNS25oEq+D+B3Ege1vKIKY4vyonKTPZWmN1NRhHUd7dmzh2XLlpFMJrn33ntpbXVOJSD9aqkZexq1J85i8Imn8Z2Pnl70iiIzj44IgXLA+50HYcY4/eY/e9GKXqke4g49LpU1LbmgSr6McFKegO9JHNTyiiKMLeqLyq9MG/RUFEFcR1u3bu3Owf7www/T2emciqBy0BCGTjqTc+deyOaq0bzxbkev/orVSvTKo5Oryytb95xXv3GNY6msackFVfJlgpvyHFBd4XoSA915SYLUCo0ijC2MayjIRR20klJ6jdQFcyb0WL5vjOGFF14gmUzS2NjI6tWrXfuZMGFC94rTVPFqN4rZSvTLo+Ol6NzOg6NqDkcHubnnvH5Xr37jGse+EH+vSj4AxWCN+cngpjzdLuTUhZLabvCvYRlFlEyQi8pJOV5791pWbdnDzYnJPb6XkjFIJSXD4eP+x6u7WfrAo7y+5hEOvbKSA281u37v9NNP746IcSpe7UYxWIlu500QJebWZsGcCSz40zraM3Ik7z/UQXJNs+ux+d303M4vEWIbx74Qf69K3odisMaCyBDW8khV+UnHr1ZoFFEyQS4qxzBF4K6m15k+akiv/SWm1rumw+3RR0c7B7as5a2NTXz7tpV07W9xbFdVVcW5557bHREzYsQI376diNJKDLMAK/07YYt9pOOm6BJT6/nm0hd6paRo7zSeitfvpud2fnmlOs6VKAyXYjACvVAl70MxWGNBZPC6aJ1cMW4Wvt+Fk0uUTHJNM/sPdvT6PPOicpPBQGgXQtfB/bS9sorWjU20vboKc8hljPrVMGTCDH50/b/yoQ99iLq6umAH5UFUVmKQBVhOhodfsY9rPG6MfoquxaVqldf5E+Sm53R+hUn5HJZcDZdiMAL9cHcoRoSIzBWRDSKySUQWxr2/TFJFhMcsXMbsRStIrnF/LHeiGHx2QWTwuiBTFrrYf2+5dDL1LhdIrheO23inLobM6InBtdW9CpF4yeDlQqiprgSgY99b7FuznJ13/wdbf3gVby69ldb1j/VS8BW1dQw6ZQ7HXHYjJ3zpLo64cAEf/ehHI1HwmTKlyGYRWJA89OnzLCm8zpvE1HoG1zqvsK0U8S0O4/Ybef122XwHohvHTFLnaupJ4bYrpvDEwnNDKWevG2mxEKslLyKVwI+B84FtwNMissQY82Kc+00RxV22GHx2QWRwe4QGdxdM1KtQvcbbTVHV9qty9P1fe/dax8pMbuP+3tp3mb73EZLJxby79SVXGavqhlN74ixqxs+k/4gJSMVh5RH1bxrVIrCwC7VS+J03N86b5HgOBKn+lY2bI1vXSByL6aKywIvBCPQjbnfNDGCTMeZVABH5AzAfiE3Jp/vHKkR6TcaFdbUUQ86MoDK4XbT5KrjtZdWEuRgSU+tZtWVPj9J3YLmdzploZWTs6uri6aefJplM+hav7nfcOGrGz6R2/Cyqh450TCUQlx82ikVgQfznqXaZse/VlUJ75+FRTD/OXM6BbL6b6/6idH9E5YYtBiPQD3GrOhNJ5yKXAXONMf9sv/8EcLox5otpba4GrgYYOXLktC1btmS9v8y7s6tcwOZFF4Xqt9ATK0FlKKSsYxYuc7S+BfeLoVKELmMcZf168rkeit50tmOaX2BSx8s8+8SDbN++3VkQqWDAyJOoGT+L2vGnU3XkMZ5yV4rwvY+ckrUfFuKpf+u1v0xqqiv58LT6XnVaqyuEQQOqAi1yioNiuHac8DpXw+qGfJ4LbojIamPMdKdtcVvyTtmXeoytMeZ24HaA6dOn53THCVpDM+xdthhyZgSVISpZs7k4vawat3h2t5WpAA+t303nwVbaNj9D68anaHtlFebgfrY67Fuq+jN4wml84orLeLJ9FLsOBc/o2GVMKAXvFK4ZdwEL6GkBO0XXOJ3/7V2G2n5VrPnGBZHL5UcxT0pGZYHH8UQcNXEr+W3ACWnvjwdczK/cCeIHK8f0pFFaS8k1zdy05IVQKyBTeLmVMi8GL1farBFVLF26lDU//xltW9ZCZ++IHIAj6gZTMWo6/cbOZMDoU6ioHsB9h5wt2prqSgZUV+RUiSqltNzi8eP0wwa5eccZapgNxRCZ5kaUbthiMAK9iFvJPw2MF5ExQDNwJfCxuHaWjUugGMhFSUdpLXm5BYJcnH5WTfrFMGbhsh7fbX97O60vN/HGxiaGf+0l1+LVlUcewzGTz+L33/oS1z9+iO37DvWS86H1u7nl0sm+KR4g3IXt96SYebPIt6ui2PzDxTwpWQoWeFTEquSNMR0i8kXgPqASuMMY80Jc+3O7O+fbP+aE2wWfq5KO0lryU2JOF6fTcbktpkpn+FED2LzhebvGaRPtb7rPxVQfM4ba1MTpMWMYMrAfbx85jh371rrK6WVdZXtheymnzJtFvl0VQdcg5JNiu+lkUuwWeFTEvhjKGLMcWB73fqB4785hQwvDKOkorSW/76QuzpRiz8x546fI2tvbeeyxx0gmk2z801948w1nz11FRQVnnnkmDQ0N1Iw7nZ+u3tfDffR2a7triGW6nE7kcmF7PSlmGhL5dFW4PYENrq3mxnmTCnb+F0NkmlKGK16L8e4cVWihE17WUlh3gVeoXurizFQomYo2U5Ht37+f+++/n2QyydKlS3n77bcd+6+o6se02Wfz+U9d2at49a+f752C1k3Bx6lEwjwp5tNVEWYNQj4pVqOrr1F2Sr4Y8brgc32kdVM850wcFtpd4BYBk24Rzl60wjeCaev2N7jzzjtpbGz0LF5dV1fHvHnzfItXB1WMbonVoiKI0krdWLN5ysiWYvd9q1IvLKrk80DY0MIw1qib4snGXRBEibkpjo69O7trnB7c9iKfMd7FqxOJBO9///u7i1dbynFlqBS06QgEmgvIFS+l5RfPHtdTRrH7vpXCoko+D4QJLQy60Mmvkk+24XROSsxpFXHP4tVNtO9yK10NkyZNIpFI0NDQ4Fi82i+1cJCc8cWg0LwmruN8ylDft+KFKvk8ECa00I2wlXziyIBoujpps4tXt21sosOleDUiTDx5Gp/9+BWBilcHTS3slTWxGBSa2w006FNGtiGX6vtWvFAlnydy9U2GreQTlXW36J5neeulpyzF7lG8WiqrGDBqipUjZtzpMHgo486bzPjx2UcIpacWTkytd005W1dTHZlC81K0ftucFnhBsBtrmEIpTqjvW3FDlXyJELaST7ZuoBF1NXx+1rGY158hmUzyj6XLMO0HHfd35JFHctFFF7GacbQdO5mK/rXd28KEC3r53DPTKTvduG66ZJLvPoLgFeoK7rVyU9ucFHx6VFLYyl5ehVIUJSiq5EuEbCr5hHED7XvrDVo3WitOP/G158Bl4rRy0BBqxp3OyKlnc9PnLucHKzZzsKXNsTBB0OiOoKmF43ZL+OUGD7MNDsfPg38x9WwKpShKEFTJlwh+k49hXTHGGF588UW+svD7vPHsYxx6Y6Nr235D6hkwfha1J86i3/Dx1ParpmFaPd9YGm6ZvxuJqc6phZ2OKU63RDahiF7bUonPnMJOw1T2KoZQSKV06RNKvljTnYYh04r1i65xoquri6amJpLJJI2NjWzatMm1bb/hE/jmlz9NIpFgfdsRgUI003FzU7jVJr05MZnpo4YE/p3i+E39Jquz3Ra0slfYQimKEoRY88mHZfr06WbVqlWR9pmvfM/ZKp0wYZHZcPDgQVasWEFjYyNLlixh506XiJiKSgaMPNmqmjRuBqNOOMEzIsQtHzdY4YLnTBzGPet29Fqpmkk2v0Vcv6lXv+Cc3MxvW8qSd7oJZFbsysyfH9VxKeVPIfPJF5x85BAJm4zKLfdLNul9ndi7dy/Lly8nmUyyfPly3n33Xcd2A2oHcursc9g88H1UjTqVigGDgGCuHzerNxUPHqR4C1i/xU1LXgh1g4zrNw3i889mW9BIp7BPM4oShLK35KOqAONFUEsNglev8urDie3bt7NkyRKSySQrVqygvd3Zgq6oraN23AxqT5xF3bhT+fZHpgHhJzO9rF63UMeg+FmvUf6m+XLllYPLUCle+owl73QhuVmcBks5R3GxhZmwC1q9yq9vgA0bNnT711euXOnabuzYsbSNmEbnyOk9ilcfNJY8YSvUg7fV67baNih+VnkcC70g3nTAmRPGyTXNzF60QpW+Ejtlo+TdLlinKkEporqowyidsJES6X10dXWxatWqbsXuVbx62rRp3TliJk2axHuuX+5o/eYSueEW6RK08LQXXnJFtdCrUJWLirksnlJ+OIU3lyRuF2yqSlC9i5WXHuucImVljVm4jNmLVpBc0+y57wVzJlBTXdnjMzelE8barKmu5Jpzx3D//ffzhS98gRNOOIHTTz+dW265pZeCr6ys5Nxzz+WHP/whW7Zs4es/X8zfqs5g3m+3cOa3H6Ku1rnmaRyRG07jAVY2y4/PHEl9XQ2C5YoanIVcian13b9pqp9sJif9nsDCngdB8YvHV5QoKRtL3uuCTVmcbr7c9O9mY2WFWaTjZIWmJl/raqo51NHJu+++S9vmZ3jn1ZV8+geraX3XOZVATU0Nc+fOJZFIcPHFFzNkyBDXY6iuEKorhfbOwyMQVxKr1HGn14p1K2Dh5tv3kyuKeHm/XPx+50G2fvZiTg2slB9loeSD5g0J4lYJ8wgf5CJ3auNUf3TWiCr+88e/5ld/+DP7N6+BTueJ06OPPppLLrmERCLBBz/4QWpra3u1cTqG9i5Deu7HfFQNOthxeNXs263tjjfLQibX8nL7+J0HubhcNDWwkk9KXsmnLjavvCEp3Kzo5pa27knYoFZWUEvPqc0tl07miYXn8sorr5BMJvnul77Bk08+6Vq8un/dsXz+0x8lkUgwe/Zsqqqquvu/9b6mXsrRa4l8igPtzmkLDvebm9INc7MsVHKtbCaPU2Obiz9fUwMr+aTklbxbtIpT3c30i9qtPmldbTVvt/a2ojPL6Tk9OWRe5JmyGWNo2bqBL113F/+xey3PP/+863FlFq++7dsX99judZMJMvHp9XQSxaRgqbgkwk4eh1nF6rVP0NTASn4oeSXvdlGl8oZkkrqonWLb29o76V9VQU11pW85Pacnh0x5tre0Ybo6ObD1edo2NtH6chOd+3YDsC3jexUVFQwadRKVY2ZQM34m1XXHdW8TLOXrl7UwpbiDLkYKGuKZTcRJqbsk/KztXI9PUwMr+aLko2vcLiq/i83t5rC3rd0xcuOh9bsDxbePqKth//79NDY2sv/+/2Hbjz7Orj/cwL7VS7sVfIr+/fszb9487rjjDt544w1+9ZflHHVaooeCh8OZCIPIn5poTj+GyoxKTOmyOn3frd8whIk4Kkb8InhK/fiUvkPJW/LZ+je9LDEnK8tvgU9n6146XltNx74XGPafj9LW5qwUKwYM4v3nzeFL//QxLrjgAgYNGtS9LTHMvfpRc0sbYxYu813klVLc6ccQJoIlKgu8HFwSXtZ2ORyf0jcoeSWf7cUW9ubgpPw69u7kwMaVvPvykxzc9iKYLt5w+G6/o4bRf+zpnDD1A3zz6su4bMZoV7nqPfzpBu9FXm7y5xrima2FWu4uiXI/PqU8KPvcNV6EiSJJrmlm4V+e5Z3tr9D68lO+xaurh47k2Mln8ZXPfozrPvahXsWrvWQK4k9PJQKLw5Is1jwrxSqXohSaPpO7JixBLLHOzk6eeOIJHk0mafnjX9jZ/LpjOxFhwsnTeGvoKVS/ZwbVQ6x+f7G+gnFrtwdWRplWt9stOOV7T2+b8tvnqviK0ULVVACKkh19Wsm70dbWxoMPPkgymWTJkiW8+eabju369evHeeedR0NDA/PmzePDd75Im0PETtjIlHQl65bhMuiqzHKhUHlmFKXUUSVv8/bbb7Ns2TIaGxu59957aW1tdWwn/WqpGXsade89g1uv+SQfO2ti97btLasdv5NLbHg2qzLD5mcvNpzcMqUSd68oxUZsSl5EbgL+BUjFDX7NGLM8rv1lw7Zt21i8eDGNjY088sgjdHR0OLarPuJo+o+dQe34mQwYdTJSaSXV+vET23so+bhiw/tXVXQr8/R0BG4RPy1t7d05Y0rNund7OvFapKYoijtxW/K3GWO+G/M+ApMqXp1MJkkmk3hN8p544ok0NDSQSCS4snE3SO8lBZlWZNTL1Z0mYdPTEQRN6VtKbg23pxO3RWoal64o3pS9uya9eHUymWTjxo2ubWfMmEEikaChoYGJEw9b6PUPu/vF04k6dtrPDx2mzF6puDW8FqnddsWUknZDKUohiFvJf1FEPgmsAq4zxryd2UBErgauBhg5cmTWO0r34x43qJIP1u1m13OPs3jxYtfi1VVVVZx77rkkEgkuueQS6uudFUZQCz29dmulCM05Rrz4+aGdbiqthzo83RrFHoYYdpGaF8V+rIqSD3KKkxeRB4HjHDbdADQBb2Kt4fkvYLgx5p+8+ss2Tj65ppmv/q6JtzespHVjE22vrsIcclaQAwcO5MILLySRSHDhhRdSV1cXeB/pCuOcicN4aP3uHu/dKlD51Sx1I0zt2HQ53WqvAo6Wfz7SDgfFS/6wCj6KfhSlFPCKk8/LYigRGQ3cY4w5yatdNkp+06ZNnHbhx2h5ZQ10OU+cVtQeRe2406l772y+d81VfGTm2FD7yMRJgaRntHQiaEFuv/0EUVRuFqzbTSNov/kiCgs8mxukopQqBVkMJSLDjTE77LcNgHte3RwYOnQoLa88A109rdOquuOoHT+LmhNn9She/T8Pb8lZyTv5yv1uldn4xLP18bu5NbxkKKbJ2SgWY2nIpaJYxOmT/46ITMHSf68B/xrHTurq6jjqPVPYu2k1/Y4dS82Js6gdP5PqoaMcUwlsb2kjuabZsTQdBFOo2SiKbEP9olx96heNU04KsNRTHStKVMSm5I0xn4ir70xuuvkW/u8TO+ioPdq3raF3pse3W9v5P39cS2XF4RqoXvHlbgrEzWVTLKF+ftE45aQAtfqSoliUfD55gGuuOJ/vfuY86m0lFSwVWE+6DD2KXMNhF0YmbrnEr5o5sluGVA73zDzkhSSVI72uprrXtnJTgH754BWlr1CWWSgzQxndqjgFQYDNiy5y3UephueVuvyKohym4NE1QYkr1fCYhct8J0bd0GgMRVGKnT6fajjI8v8KoYdPHqJzYajVrChKoSgLn7wfTj70dAbXVvP9j0zh1stOidyHm4p1b7Zzw6cmdJNrmnPqV1EUJQh9wpIPE2+e/llyTTOzF63IyQLXPOiKohSSPqHkIXy8eVQFOdxiz5vteH1V9IqixEmfUfJhCWqB+/nbveYDFvxpHd9c+gItre0l7avXOQdFKV5UyWeQHn7pRLplHsTa91qA1N5lujNGZn63VBRnXypBqCilSJ+YeA1K+iSpG+mrQr2s/RSpRTlBSH23lCZrg4yBoiiFQ5V8Gk4KK53MkMqgSbASU+u7V8L6sd3OQV8qilMTgSlKcaNKPg0vxeQUUumW68Xpc78wzvTvlpLiDDMGiqLkH1XyabgpptSq10wfs1sOG6cFVJm5VOpqqqmuFMfvlpLiDDMGiqLkH514TSNs5sKw+d4zwzi9Jlfd5Ci2Cdmo69oqihItfSJ3TRiKRYk6yQHOyl+zKypK36bPJyiLmkLdCLSknaIoTvT5BGW54FTAO71gdz7jwktpQlZRlOJAJ149cIpXv6vp9YKFN5bShKyiKMWBKnkPwhTszoc1rZEsiqKERd01HoRR3PmwpjWSRVGUsKiS9yBowe58WtNhs2kqitK3UXeNB34Fu3MpLpLKVT9m4TJmL1pRlHlpFEUpfdSS9yAu94hmblQUJV+okvchDvdIqVaLKpaFYoqiBEeVvE0+FVgpxrvr04eilCbqkyf/xbZLMd69lNIfK4pyGFXy5F+BlWK8eyk+fSiKokoeyL8Cy0w7nG2ETj4pxacPRVFy9MmLyOXATcB7gRnGmFVp264HPgt0Al82xtyXy77ixC0ePk4FVmrx7mHTMCuKUhzkOvH6PHAp8LP0D0XkfcCVwCRgBPCgiJxojHGvrVcgkmua2X+wo9fnqsB6oqttFaU0yUnJG2NeAhCRzE3zgT8YYw4Cm0VkEzADeCqX/UVNZsRIisG11dw4b5IqsAxK7elDUZT4fPL1wNa099vsz3ohIleLyCoRWbV79+6YxHHGrXB3bb8qVWaKopQFvpa8iDwIHOew6QZjzGK3rzl85pjA0RhzO3A7WEVD/OSJEo0YURSl3PFV8saYD2bR7zbghLT3xwPbs+gnVgox4aooipJP4nLXLAGuFJH+IjIGGA/8I6Z9ZU0pxqsriqKEIdcQygbgR8AwYJmIrDXGzDHGvCAifwReBDqAfyvGyBqNGFEUpdzRQt6Koigljlchb13xqiiKUsaoklcURSljVMkriqKUMarkFUVRyhhV8oqiKGVMUUXXiMhuYEsOXQwF3oxInChRucKhcoVD5QpHOco1yhgzzGlDUSn5XBGRVW5hRIVE5QqHyhUOlSscfU0uddcoiqKUMarkFUVRyphyU/K3F1oAF1SucKhc4VC5wtGn5Corn7yiKIrSk3Kz5BVFUZQ0VMkriqKUMSWr5EXkVhFZLyLPikijiNS5tJsrIhtEZJOILMyTbJeLyAsi0iUiriFRIvKaiDwnImtFJPb0myHkyuuYicgQEXlARDbafwe7tIt9vPyOXSx+aG9/VkROjUOOLOQ6W0T22mOzVkS+kSe57hCRXSLyvMv2Qo2Xn1yFGq8TROQhEXnJvha/4tAm2jEzxpTkC7gAqLL//zbwbYc2lcArwHuAfsA64H15kO29wATgYWC6R7vXgKF5HDNfuQoxZsB3gIX2/wudfst8jFeQYwcuBP6GVeJyJrAyD79bELnOBu7J17mUtt/3A6cCz7tsz/t4BZSrUOM1HDjV/v8I4OW4z7GSteSNMfcbYzrst01YJQYzmQFsMsa8aow5BPwBmJ8H2V4yxmyIez9hCShXIcZsPvAr+/9fAYmY9+dGkGOfD/zaWDQBdSIyvAjkKgjGmEeBPR5NCjFeQeQqCMaYHcaYZ+z/9wEvAZlViiIds5JV8hn8E9adL5N6YGva+230HtBCYoD7RWS1iFxdaGFsCjFmxxpjdoB1EQDHuLSLe7yCHHshxifoPmeJyDoR+ZuITIpZpqAU8zVY0PESkdHAVGBlxqZIxyyn8n9xIyIPAsc5bLrBGLPYbnMDVonBu5y6cPgskpjRILIFYLYxZruIHAM8ICLrbQukkHLFMmZecoXoJvLxyiDIscd2TnkQZJ/PYOUveVdELgSSWLWVC00hxisIBR0vERkE/AW4xhjzTuZmh69kPWZFreSNMR/02i4inwIuBs4ztjMrg23ACWnvjwe250O2gH1st//uEpFGrMfynJRWBHLFMmZeconIThEZbozZYT+W7nLpI/LxyiDIscd2TuUiV7qiMMYsF5GfiMhQY0yhE3EVYrx8KeR4iUg1loK/yxjzV4cmkY5ZybprRGQu8O/AJcaYVpdmTwPjRWSMiPQDrgSW5EtGL0RkoIgckfofayLZMRIgzxRizJYAn7L//xTQ64kjT+MV5NiXAJ+0IyBmAntTrqYY8ZVLRI4TEbH/n4F1bb8Vs1xBKMR4+VKo8bL3+QvgJWPM912aRTtm+Z5djuoFbMLyW621X/+//fkIYHlauwuxZrBfwXJZ5EO2Bqy78UFgJ3BfpmxYkRLr7NcL+ZAtiFyFGDPgaODvwEb775BCjZfTsQOfAz5n/y/Aj+3tz+ERPZVnub5oj8s6rECEM/Ik1++BHUC7fW59tkjGy0+uQo3XmViul2fTdNeFcY6ZpjVQFEUpY0rWXaMoiqL4o0peURSljFElryiKUsaoklcURSljVMkriqKUMarkFUVRyhhV8oqiKGXM/wOnCSQMSllZFgAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import random\n",
"from scipy.stats import linregress\n",
"\n",
"\n",
"def generate_dataset_simple(intercept, beta, n, std_dev, min_max_x=(-2, 2), seed=None):\n",
" if seed is not None:\n",
" np.random.seed(seed)\n",
" x = np.linspace(min_max_x[0], min_max_x[1], n)\n",
" e = np.random.randn(n) * std_dev\n",
" y = intercept + x * beta + e\n",
" return x, y\n",
"\n",
"\n",
"x, y = generate_dataset_simple(intercept=1.01, beta=3, n=250, std_dev=3, seed=42)\n",
"(slope, intercept, _, _, _) = linregress(x=x, y=y)\n",
"fig, ax = plt.subplots()\n",
"ax.scatter(x, y)\n",
"ax.plot(x, intercept + slope * x, color=\"k\", linewidth=3)\n",
"ax.text(s=f\"$y={np.round(intercept,2)} + {np.round(slope,2)}x$\", x=-2, y=20, size=28)\n",
"ax.set_title(\"Grundgesamtheit\")"
]
},
{
"cell_type": "markdown",
"id": "cd926238-0129-4252-bae4-b52657b391cb",
"metadata": {},
"source": [
"Wenn wir jedoch eine Zufallsstichprobe aus der Grundgesamtheit nehmen und ein lineares Modell auf der Grundlage der Stichprobendaten erstellen, wird die Regressionslinie der Stichprobe nicht mit der Regressionslinie der Grundgesamtheit übereinstimmen. In der folgenden Abbildung haben wir vier Stichproben mit dem Stichprobenumfang $10$ (blaue Punkte) gezogen. Wir sehen sofort, dass die Regressionslinie der Stichprobe (blaue gestrichelte Linie) nicht mit der Regressionslinie der Grundgesamtheit (graue Linie) übereinstimmt. Um dieser Variabilität Rechnung zu tragen, die auf den Zufallsstichprobenprozess zurückzuführen ist, wird eine Statistik berechnet, indem die folgende Gleichung angewendet wird"
]
},
{
"cell_type": "markdown",
"id": "be1e7181-fa8c-4fe6-9c6c-494a8e81b24e",
"metadata": {},
"source": [
"$$s_e = \\sqrt{\\frac{SSE}{n-2}}\\text{,}$$"
]
},
{
"cell_type": "markdown",
"id": "965e2f6a-44a9-4f20-b752-3afe875fc289",
"metadata": {},
"source": [
"Wobei SSE für die **Summe der quadratischen Fehler** und $n$ für den Stichprobenumfang steht. Die Statistik $s_e$ wird als **Standardfehler der Schätzung** ($s_e$) oder als **Reststandardfehler** bezeichnet."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d4c9365e-fcfe-4c6a-a2d4-25cea3f652d1",
"metadata": {
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD4CAYAAAAJmJb0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACgbElEQVR4nOz9eXxb1Zk/jr+v9n2zNsvybsd29o2EDEvY2lIKbaGl7dACXejynYFOaT90/Q2fDgzttJ2lhcKH0tApUMrSmS50oQy0MIU2JSRkj+PYiVdJ1r6vV9L5/aGcE8mWZDtWYifc9+ulV2Lp6ujcq/d99JznPM/74QghECBAgAAB5ydESz0BAQIECBBw5iAYeQECBAg4jyEYeQECBAg4jyEYeQECBAg4jyEYeQECBAg4jyFZ6gmUw2w2k46OjqWehoDzGHv27AkQQixn+3MFbgs4k6jH62Vl5Ds6OrB79+6lnoaA8xgcx40vxecK3BZwJlGP18vKyAs4/xGNRuF2u5FMJqFWq+FwOKDX65d6WgIELBrLldtCTF7AWUM0GsXQ0BB4nodGowHP8xgaGkI0Gl3qqQkQsCgsZ24LRl7AWYPb7YZCoYBcLgfHcZDL5VAoFHC73Us9NQECFoXlzG3ByAs4a0gmk5DJZBXPyWQyJJPJJZqRAAGNwXLmtmDkBZw1qNVq5HK5iudyuRzUavUSzUiAgMZgOXNbMPICzhocDgcymQyy2SwIIchms8hkMnA4HEs9NQECFoXlzG3ByAs4a9Dr9ejr64NUKkUikYBUKkVfX9+yyEAQIGAxWM7cFlIoBZxV6PX6ZUF8AQIajeXKbcGTFyBAgIDzGIKRFyBAgIDzGIKRFyBAgIDzGIKRFyBAgIDzGIKRFyBAgIDzGIKRbzCKxSL+4z/+A/39/VAoFGhtbcUXvvCFBVW+LXSMhRz/zW9+EzfeeCO6urrAcRzqyd8eO3YMd999Ny688EJYLBZotVqsX78e991331mv5NuxIwWHIweRiMDhyGHHjtRZ/XwBZ5/bQ0ND+PCHP4yBgQHo9XqoVCr09/fj85//PDweT8WxX//618FxXM2HVCpd9PmfKUSjUQwODmL37t0YHBxsvN4NIWTZPDZt2kTOdXz2s58lAMj1119PHnnkEXLnnXcSiURCLr/8clIoFM7IGAs5HgAxmUzkqquuIkajkbS3t9ecx5e+9CWi0WjITTfdRO6//37y//7f/yMf+MAHCACydu1akkqlFnRt6iESiZAjR46QN954gxw5coREIhH22g9/mCQKRZ4AhD0Uijz54Q+TC/4cALuJwO3Twtnm9ksvvUQuv/xy8pWvfIU8+OCD5Ac/+AG5/fbbiVqtJs3NzcTr9bJj9+/fT5544olZj7vuuot93lKhHrcjkQh5/fXXyf79+8ng4CDZv38/ef311yuOmQ/q8XrJDXv541y/EQ4dOkQ4jiM33HBDxfP3338/AUCefPLJho+x0OOPHz/O/r9q1aq6Rv6NN96oSravfe1rBAB54IEH5jyf+WAuojc3ZysMPH00N2crxqh1I5VDMPKnh6Xgdi08++yzBAD51re+Neexn/rUpwgA8pvf/GZeYzcac3H7yJEjZP/+/eTo0aPssX//fnLkyJGKMebidj1en5Phmlgshvvuuw9r166FXq+HTqfDypUrcfvtty/pvJ566ikQQvC5z32u4vlPfvKTUKlU+MlPftLwMRZ6fFdX17zPZ/PmzbOKO6LRKC644AIAwKuvvtqQpeVcCn7T09WX2vT55SzzulAI3J4b7e3tAIBwOFz3uFQqhaeffhotLS24+uqr6x57pkImc3F7LmGzRnD7nKt4zWazuOSSSzA+Po6PfexjWLlyJVKpFA4ePIhjx46d1pjFYhGhUGjex5tMJohEs38f33jjDYhEImzZsqXieYVCgfXr1+ONN96Yc+yFjtGIz5wvKOFcLhcAwGg0YmhoaNHl28lkEhqNpuI5mUyGRCIBALDbeXg8slnvs9t5ALKKGwkA+9ftdi/LCsRaELhdfYxMJoNEIoFMJoMjR47gS1/6EgDgmmuuqft5zz77LGKxGD772c9CLBbXPI7yWqFQQKPRIJfLNYTXwNzcpsJmlLNApbBZI7h9zhn55557DgcOHMALL7yAt7/97Q0Zc2JiAp2dnfM+fnR0tOqGpdvthtlsrvjCKFpaWvCXv/wFuVxu1i/3YsZoxGfOF263G1KpFI888ggkEgne8573MK9kMTfDXES/55487rhDjEzm1I2qUBRwzz15ALI5b6RzBQK3q4+xY8cO3HHHHezvjo4O/OQnP8Ell1xS91weffRRcByHj3/843WPO5NOwlzcdjgcGBoaAlDibC6XQyaTYauVRnD7nDPydIm2a9cuXHXVVVW9joXCbrfjxRdfXNDx1ZBKpaoSGCh5K/SYejfCQsdoxGfOF8lkEt/97nexf/9+3Hnnnejq6gIhZNHGdC6i33abCkAKd98twfS0FHY7j3vuyZ98fu4b6VyBwO3qY7z3ve9Ff38/EokE9u7di+eeew5+v7/ueQwNDeG1117DlVdeOeeP3Jl0EubiNhU2c7vdSCQSUKvVaG9vZz8ujeD2OWfk3//+9+Ohhx7CP/7jP+L73/8+rrvuOrznPe/BNddcc9o3hUKhwFVXXbXoualUKvh8vqqvZTIZdkwjx2jEZ84Xjz76KJ588kl84AMfwKc//WkAjTGmcxEdKBn6226jf8lOPkqY60Y6VyBwu/oYTqcTTqcTQMngv+9978MFF1yAdDqNr3zlK1XHe/TRRwEAt50iTU2cSSdhPtyuJ2zWCG6fc0beZDJhz549eOmll/C73/0Ov/rVr7Bjxw5s27YNr7zyyml5rIVCYU7PoBwWi6VqjM/hcODIkSPIZrOzPBaXywWz2Tzn/BY6RiM+cz74+te/jocffhjXXnstvvrVr4IQ0lBjuhgFv/ncSOcCBG7Pj6tr167Fhg0b8NBDD1U18vl8Ho8//jhMJhOuv/76Occ7007CknO7VtrNQh4AfgTAB+BQ2XMmAC8CGD75r3GucU4nzSyfz5OPfOQjBADZtWsXe/7nP/852bx5M9Hr9WTVqlXklVdeqTnG6OgoATDvx+joaNVxaGrhn/70p4rn0+k0UalU5Oqrr57zfBY6xmI+c64USoqvf/3rBAC55ZZbSCgUmleq4nIFFpBC2SheE4HbDRuDYu3atUSlUlV97ec//zkBQP7hH/5h3uPNNwV3uaIerxtl5C8FsHHGzfBtAF8++f8vA/jWXOPMdSP4fD5SLBZnPX/rrbcSjuOIy+UihBDy8MMPk46ODrJr1y5SKBTI448/TqxWK8nlclXHTafT5MUXX5z3I51OVx3nwIEDdfOAn3jiiYrnc7kcGRwcJOPj46c9xkKPL8d8jPw//dM/EQDk5ptvnnfBy3LGAo18Q3hNBG6f1hgej6fqXP74xz8SkUhErrjiiqqvv+td7yIAyIEDB6q+fj7ijBv50megY8bNMASg+eT/mwEMzTXGXDfCLbfcQrq6usidd95JHnzwQfLAAw+Qa6+9lgAgd911FyGk9Ius1WpneTc6nY4MDQ2d3hVcAG6//XZWYffDH/6QfP7znycSiYRs3759lpGkXtb27dtPe4yFHv/444+Te++9l9x7773EarUSg8HA/n788ccrjv3+979PAJC2tjby2GOPzaom/J//+Z/GXLTTxOl4Xwsx8qRBvCYCt09rjPe+971k69at5Ctf+Qp5+OGHyXe/+11y8803E6lUSvR6Pdm7d++sObpcLiIWi8mWLVsaffpnFQvl9lIZ+ciM18M13vcpALsB7G5ra6t7Io899hi55pprSEtLC5HJZMRut5MrrriC/PKXv2TH/OIXvyAcxxG9Xl/xUCgUZGpqau6ru0jk83nyr//6r2TFihVEJpMRh8NB7rzzThKPx2cdW+tGWMgYCz1++/btNZfqM+dx66231l3azzy+UZiL4JFIhOzevZv87Gc/I88//zzZs2fPvMvBG2Dk58VrInB70dx+5plnyDXXXEOcTieRy+VEoVCQvr4+cvvtt1esEMpx3333EQDkkUceacg5Nxpnitv1eM2VXl88OI7rAPAbQsjqk39HCCGGstfDhBBjvTE2b95Mdu/evah5PProo3jiiSfwyiuvLGqctzKi0SjcbjeSySTUajUcDsdZ28QsL0wp3wSjhSn0dVrgw3EccrkcnE4nxGIxpFIpBgYGao7PcdweQsjm+c6nEbwGBG4vF5yv3K7H6zMpa+DlOK755ASaUdrAOuPYvHkz9uzZg5dffhmEEGQyGezcuRNjY2Nn4+PPeZwNiYB6JeRzlYHT1wuFAqRSKaRSKWQyGUKhUEU5+BnEkvAaELi9WLxVuX0mUyifA3ArgH85+e+vzuBnMaxbtw73338/PvOZz8DlckGlUmHjxo34z//8z7Px8ecUqnk1Z1oiYK4S8nqFKdFoFMePHwdQKmBJp9MoFovI5XIghOCZZ9rxi1+sQjBIZhVMNRBLwmtA4PZCcC5x2+/3Y3BwEEeOHIFer0cul0M0GgUhBFKpFIQQ8DyPfD6PwcHBBa8+GhKu4TjuKQCXATAD8AL4vwB+CeBZAG0AJgDcSAipK6LRiCXt+YQzubSstXTMZrOwWCzgOI4dS0ipqrW3t3fB84lGoxgZGYHb7WZj0nzoUCiEbDYLsVgMi8WCTZs2YXBwEDzPQy6XI5lMIhQKIZlMQiQSQafTIZ1OAwDi8Ti7OWUyGV55xYEdO7aDkFPzVigKeOCBbIWhX0i4plG8BgRuz8Ry4rbf74fZbF7wXBrB7XA4jHQ6jRUrVjBHJhAIQCKRQKlUMt0em82G3t5eSCSSihAPRT1eN8STJ4T8bY2XrmzE+G9FzOUVLPYmqeXVRKPRqtV/HMctWMQpGo1i3759CIfDrGx9amoKsVgMcrmceTWhUAgTExMAStWH4+PjSKfTyGQy0Gg0kEgkKBQKCIVCEImceOklGSQSNdauTSCXy6FYLOLnP99cYeABIJMR4+67JZhH0WNVCLw+M6jHbQCLNv4L4XYkEkEkEoFer1+QONlc3JZKpUin08hms3C73VCr1UilUhgdHYVUKkU+n4dcLkcqlYJWq4Xf74fJZGJzF4vF4DgOqVQKGo0GWq22ogL3vBYoe6ug3tISwKJV82otHRUKBSsxL/eCxGLxgpe6brcb6XQaSqWSdeZRq9WIRqPQ6XQQiUTwer0oFosQi8U4ceIEADCvqlAoIB5PIp9fhz/8QYHdu20YHi591ooVPmzcOAaJRILVq1cjFDp1A8hkWeRypfnVkikWsHSoxe2RkREUCoVFq0EuhNs+nw9Wq3XBIZx63JZIJMjn8wDA5Cj+/Oc/Y9WqVejs7MTQ0BBSqRQcDgd0Oh10Oh3y+TxzanieRyqVQnNzMxQKBbRaLbLZLAqFAggh579A2VsF9WLTjYgt1tLrMJvNLH5ZXkY9PDxcVfe6HtmSySTy+TyUSiV7TqfTwefzIZlMIhaLgRACkUgEpVIJn8+H5uZmJBIcDh7swZtvOvD6600Ih2eLWg0Pm5FIyNHeroFSqcSqVSdgs42iv38I2awcO3aU3HcqRyxg+aAWt8fHx9He3r7omPlCuG00GmEwGGbNZS4jWovbHo8HxWIRGo0GYrEYPM+X0hg5DslkEk6nE3q9HiaTiW2s5vN5SCQSttJIp9NQqVQwmUzgeR4ejwfxeBz79+/HunXr0Nraen4LlL1VUE80qRGqefX0Oqppbcwl4lQtfKRWq5lXQ70diUQCjUaDeDzO4pMGg+Fk9oAa//RP23DkiBX5fHX9b5GogFWrQti82YNYLIzhYQ8OHjyI978/U3GcVhsHz6uYHLGA5YNaXOI4bsGORDUshNuDg4NzipMthNtSqRTJZJI1A9Hr9YjH4wBOibDJ5XLk83lEo1G28Uqh0+kQi8UQj8fxyiuvIB6Po3zfdHJyEhaL5fwWKHuroB5R3W73olXzFip8VG8+tWKsDocDHMfB4/GA4zjwPI9IJHIyUwCQShWQSCQsNGO3y3DihGGWgddqM7jgAj96eobQ03MCQBTZbBaZTAGZzOy58rwEAwNT+OQn289Edo2ARaIWl5qbmxuiBrkQbs8lTlaP2y+/3IxHH+1GMKiGSlVKCEil3g6DIYbrrtuJSy6ZrEh7pLF7k8mEkZERpFIp2O12mEwmjI+Pg+d5hEKhuj9qqVQKvb29Zz+7plEQMhAqUWtztVb2gMPhQDweP61Nq/ls5M48RqvVIh6PY2RkBFKpFDabjUnFZrNZ8DyPRCKBSCQCr9eLqak0jh7twPHjAxgcbMM117yACy44Co1GA4PBAIVCgX/7t7XYubMXK1aksG7dJJzO/XA4XCAkj1QqVXP+CoUC/f396O/vR1dXF/OuZmKhxVCNgsDtSlTjG4CqvF7shuxc3K41F7fbXZPbzz2nwT//czuy2eorTqk0hw9+8A+45JJJAIBYLMaqVasglUrh9/sxNjYGkUiEXC6HRCKBbDZbc/5msxmrVq1Cf38/bDZbRXYQRT1eC0Z+GWEhGTPVDC6N1Verppvrc4eGhlAsFpFIJJBMJsFxHDZu3Ain0znnDTkxMQGJRAKe5+F0OqFSqUAIwbFjw+D5Fdi504Tf/AY4dqwJhJyqv1u/fggf+chvoNPpUCwWoVAokM06USxmUCiMsfSxWqDLYfpvV1cXenp66p6vYOSXBvPl9kKN/1Jx+9JL2+D3118lGo0xfPe7v0Qmk0FXVxfC4TD8fj8IIYhGo+B5vuZ7tVottFotZDIZ1Go1Ojs763L7jKdQClg8FtpnslpsceZmbCqVwq5du2A0GuveWG63G8VikREwk8kglUrhj3/8I7Zs2YJYLMbm9cwzYjz4oBSBgBIWyxp89rNebN1aqtKTyWSYno7g+HEt/ud/pPjLXy5DMKitec4+nxkAh0KhALFYDJFIhFTqYN0KRJlMxnKIW1tbEQgEoNPpwPM8Dh8+DJfLxW5gAcsDC+F2tf2gmdzO5/MIhUJ49dVX0d3dXdcZWgi3I5EIhoeHwfM81Go1bDYbq0CVyUq9hGmOu9/fN+d5h8NaaDQaFAoFTExMwOPxsKybmeA4DgqFAlKpFE1NTTAYDPD7/VCpVMjlcovitmDklwkWmzEzczO2REQ/CoUCWltb695YyWQSiUQChBDEYjGIxWKoVCokk0ns2rULK1asgFwux3/9lwzf/GYrstkSbXw+Je65pwW33jqGCy4YhVqtxhtvtOG73+2pOkeOI2hvn8aqVaPYuNGNpiY3stk8AoEACoVCzXOjaWRKpRJNTU0YHx+HXC5HJpOBTqdDNpuFSCRij71790Kr1Z5zTUPOVzSS28lkEi6Xi4XjqDRBLWdovtym94tIJEIsFkMikcDx48eZU0GTBaxWK3K5HEymBEKh6g6MSpXCihXHsHbtIRw6dAK1oiUcx0Gj0UClUqGtrQ2pVArT01kcOGCCx+PA2Nh6XHHFIAYGgovitmDklwnmmzFTa9k7M2MhFAqB4zhotVqmkwFUv7HUajUefzyPJ5/cilBIA5MpgQ98YB8uv7yUupVIJGA0GnH//XZm4ClyOSn++783YevW40gkEjCZ9kAs3oZCoRSrVCiyWLVqEmvXTqG9/Qjk8tKNlk6nEYnUJr9er4fBYGA3VSqVQqFQgFqtRmtrK/OwEokEisUikziQSqXgOK5hpeoCFo9GcpvquACAUqmc8weDciGVSkEkEkGj0YAQwow25TYdN5/Psx8DiUQCQgjy+TxcLheA0sZnLpfDNde8hmeeuQo8X/qxMRgi6O8/iv7+o2hrm4BIVOL2TPsuk8nQ1NQErVYLQow4cECCsTETPJ4WnDhhwNRUZbqwwxFAW9vEorgtGPllgvn0may37J2ZJUBjjyaTib2/Vjrab36jw8MP9zDChkJaPProhZDJ3sS2baNIJBJIJDj4fIqqcw+FNBCJREgkEtBoiti69SjE4hT6+0fQ3j4JiaR0oxQKBWSz1Q27WCyGXq+H1WqF3W5nlYQWiwWTk5NQKBRob2+HRCKBRFKibTqdRiKRYNo1er0ePM+jWCwiEAgs8BsQcKbQSG5nMhkWI7darQBq8/qBB4K4555+BAIbYTTG8Z73vI4tW0agUCjQ1NTE4vRAaTNVoVAgFAoxYyoSiZh+TCaTYZWoxWIRq1btx9/+bQxerwEdHWNobp6uef6Ux83NzeB5Hr/5TRd+/etuTE8ra76H4vjxEqcXw23ByC8TzKfPZL1l78DAQEXamEqlglarZUtTqgGjUqkQjUaZJxCNRvGd7xiZgafgeSkef3w1slktXnvNgKEhO4DZu/oAYDIlWFxdoVDgve/9HZMbyOeLqBGGhEajgdlsBs/zEIvFMJlMLCz09NNvQzCogtmcxmc+o8bb3x6Ay+VixkIul7PsHZlMBoPBAJFIxBQGM9VyKwUsCRrJbRr6cDqdIIRgcnKyKq937Ejhrrv0bOUZDuvw5JOXgRCCK66YZqtFKg5GtW1oIZJUKkUqlQIhBIVCARKJhInh0erTrq6j6Oqafb7JpAqp1ABcLjtUKg7veMdhaDQaFjaKRpM1DbxEUkRXVxIdHSHo9SPo7Q0smtuCkV8mmCu3t1yBUalUwmQyQaVSVXgxdNOKCieNjo7C6/UynQwavinXCdm1axf8/quqzikSUeMHP1hZd94SSQGf+MQI29SKx+PI5XI1j29qasLKlSvhdDoRDocRDoeRzWYRjUYxOTmJfftW4oknNiOXK/3o+P0qfPvbvSgWi7j2WgkrHIlEIpBKpRCJRCgUCqwknF4vmpMsYOlRj9s0REMVGJuamliqYjVua7Va7N27F8PDwxXaRuW81uv1+Md/FM8KLfK8FM89dyE2b34cSqUSuVwOFosF0WiUVZs2NTUBAMv2MplMmJycBM/zVXmdSKjhdjfD43EgGu2Gy2WH13uqoKu5OYl3vOMwJidLqZQGgwFXXmnEs88CUmkRXV0JrFnDY8WKBEymE7DZAjAaVSxEJJVKwfMyKJXK0+a2YOSXEWp1dadLWRqmyOfzmJqaYs0Eai17y3UympqaIJfLEQwGIRaLcfDgQchkMkSjGZjNKQQCcxecdHfHYTLFMDRkQDyuwJo1I7j66r9Ap3PD7a7hrqNUCWgwGGA0GnHTTTcBKGVMKJVKuFwuJJNJllXwi19cwAw8RTYrxn33DeDhh5O49dYhXHmlF6lUir0nm82yakO1Wg21Wi3E45cZqnG7nKt6vR6ZTIbxmmaVVKs8tVgsGBsbQ6FQQDKZhMPhYOmR0WgUAwMD8Hpbqs4jHNbCYDCw0EcqlYLRaITFYmFiZSKRCMlkErlcDqOjo7M2TsNhPX7/+6vhdjsQj+vqnrfHo0Yup4JSmUGxWESxWMTq1Sk8+eQg0undyGbj0OlKY9CMuGiUh81mY5o1FosFhBAoFIrT4rZg5M8QGimlSpeyVqsVLpcLMpkMUqkUXq8XJpOp5rJXLpezjatYLAaVSgWxWIKRETleekmB4eEVCAZX4eabj+LBB9chl6ukg0RSwJo109iwwYXt2xOQyXyIRqPMW6d5vtXCMVKplH2+1WpFoVBAW1sbe51uxtFydrrJFQppZg8GAOAQDGrw/e+vRTr9Oi6+OAJCCAwGA3w+H4xGI4t90sIwAY3HmeC1XC6HyWSCy+UCx3HMEakX0gkGg7BYLEgmk3C73bBarVCr1UgkEnjzzTdhNpuq5rE3NSWxatUquN1uRKOlymmlUolAIIBIJMIKk6JRNTweB9zuZmzbthMKRcmL5zgOBgOHoaH+mucllxfR2RlHa6sXnZ1hyGRipNOErQ7CYRdksjSCwQjEYjHEYjECgQALIVGtG5PJBI/HA5FIhI6Ojoqix4VAMPINQL3CpMWo6VFQg5jP58FxHAtZKJVKbNu2rWLMmZkMcrkcfn8cBw82Y2ioF3/9axOCwUpD2tQ0jk9/mseTT65CKKRBU1MS73pXGB/4wDDc7uOIRqNwuXgmtlQNEokENpuN6XkUi0XI5XJW0KFUKtHTcyq1km7GcRzHshxEIlHd1DSglM3zzDPrcMklk0yCWCKRIBwOg+d5GI3G077OAipxtnhNwXFc3e+x/Hiq/5JOp1nc3Ov1Mn32K64Afv7zd1bsNUmlPG6/3c0KmgKBAFKpNPbtC2By0gq3ezU8nmZ4PM1IJE5xcGBgGhdfXGBc5XkeFksMfr8OcnkBK1akcOGFMvzN38ixaRMADCGZjOLAgQMghCCdLiUJ0OSCUCjE2vmJRCJIJBIoFArE43Gk02kYDAZkMhmW5ePz+aBWq2E2m+tKj9SCYOQXiampKezduxeFQoEZ4uHh4dOSL60FtVoNj8fD4npUr7q8dJ/ekB6P52R2gBO7dpnxhz/YsHOnelYIhILjCIaHDbj00iNYt+4wC/MEg0EcPz6KcDhcc14ikQhWqxUGg4Hl/BaLRRBCsGHDhroSCw6HA/v27UM6nYZCoQDP88hms3jve3fhJz/ZPmtVUY5QSINsNgu1Wg2/3w+LxcLS6url2wuYP84Wr3O5HGKxGJOZlkgk0Ol0Fd/jTG7bbDbm+adSKUgkEkxMTCAcDjMnZO3aQxCLxXj++UsQiWjR1JTCzTcfwdvelsMbb4zi6adtGBp6JzyeZiSTtVaP9PO7oVJNQavVorW1FWvXroVWG4ZcPoFVq8Roa3NAr5eXHe/Avn0+iESiCslh2vADKOX3UyOfz+ehUCgQjUaRTqdhsVhY8RZNRpDL5ae9ahKM/CIQjUbx5ptvQiQSQavVIp/Pw+/3I5vNsvxbitNR06PQarX4y1/+wio9qcqdyWTCrl27MDAwwDwsh8OByclJfO5zrRgfr04IuTyLvr4TWLFiGP39Y2hulgBQsLZjIyMjNedCyWo0GpHP59Hc3AyJpLQhms/nWcqm2+2u6+HRJg00R1mj0cDpdKKzMw2NZg9++tPVCARUqJbR09SUZNk1ZrMZcrm8ouGxkCO/OJwtXtMf+tHRUUgkEojFYiSTSWQyGcbFatweGxtDe3s7NBoNJicnkU6n2SqXZsHk8wV0dU3j/e//C4zGLLq7vQgEAnjppVKI8cSJjRgZ6a05N7k8h66uKNraAujuDrFQCe1MduuttVUgKbctFgtCoRBTWqUpv1KplGWFSaVS5hjRLBqqTqnRaMBxHGw226J4LRj5BaJ8CUszQ0wmEziOY541rbIrRy6Xw+9/b8K7353D9LR0QT1I4/E403dJpVLIZrMnl8tyvPSSDq++OoVrrgH7xW9ra8Pmzd4KI2+xhNDXN4K+vmF0dbkhkZTiftlsFoFAsWYYBji1cpDL5VAqlUilUixvlzZJKGUB8EzjYz6kJISgr68PqVSKtUtTKBS49toYbrhhN/7rv2R45JELKrx6ubyAf/kXEa655hq8+uqrAEren9VqZcvw0zU6b3VQbo+MjCASicBsNs+L1xzHYXBwcMFxemoMaWMNmoZLDV8ymcSbb77JVg+U25OTk9i9ezdyudxJo04QiRgxNtaE6ekWuFx2uFxWpFKle2vt2v244YZ9FZ/d3OzB4GApc0wuz6K1NYD29gC6u6Po7Y3BbA4jkymFh2QyGdLpDFQqFSwWy7yMbTVu6/V66HQ6yGQyiMViJrjH8zyUSiXa29vR3d2NfftKcy3PolsMr98SRr5Rm0UzCzbocrG8lZ1EIoFIJIJYLGZKjH6/H7/+tRY7dqxkBsvjkeGOO8QAUnMa+mQyCaPReDLuqMHu3Xbs29eCI0csKBTEGBgI4tJL91Z4WFu3+nD4sBrr17uwcaMHSuUk4vH4yaIkIJ8nNQ17KTZuYp42AIyOjkKn00EqlZ4sasrCarUyLRDa0adcxKmclLU0uWkGBc2iyGaz8Hq9MBqN+NjH8pDLD+DHP16BYFANiyWNb3wD7Hp1d3czTXqK05GmPZexY0cKd98tWbDjMBPl3KYesc/ng81mg1wun8VrmUyGSCSCyclJ5PN5GI1GWK3WOWUGZoIQAofDgUKhgGg0yjYi0+k0zGbzyUK8ytUDz/MYHVXh4MGLMDbWhBMn9EinaxcWeTzN7P9UzO6d70xj06Z9aGmZhlw+AbW6VD1bzm2XK1NRCOV0OqFUKudVqTsXt+n+Bs3mUavVWL9+PdOfbySvz3sjv1Dhr3qYWbChVquZ+D+9EWhLsA0bNsDr9WJ0dBQajQY/+9mGWXHm+fQg5Xng8GELXnjBgVdf1WJqavam5NCQCW53Fq2tpb9DoRAGBjL4h3/4NSueiEQydfPXRSIRuru7sWbNGhSLRXAcx3J1abER/UGzWCwsHUyn00GlUiGdTqOjo4MVX/l8PtZdvtaGHe3SA1QWyVC1Qblcjk9+EvjkJ13sR2Pz5lNCe/MpsjmfsWNHCnfcIUcmU5KQWIjjMBPl3FYoFCgWi6yOwWazVfA6Ho/D7/ezWgUqneFyueB0OqFQKOYdWqD3kN/vRyaTYaE3kUgEg8GEyUkFdu8W4SMfKR0fCoWQTqcRjZrw29+uqju2QpFGc7MHnZ0BXHjhNqhUShbvd7lcWLPGC0IAr7dk3GkKbiZTSnekfVVVKhVzXsLhMOLxOHbv3l13M3o+3O7tLYWLKLfp9Wo0r897I9+IVnkUM7MBTCYT0uk0W2YmEokKGdN4PM4EkAKB6p5GeQ/Sco+A57X413/txEsvSRGL1f5yu7vjWL16HNPTfhw4UMr59fl8yGQyiEaj8Hq9Nd9Lle9WrFiBSy65hBWC7N69GxqNBnK5HC0tLSxmns/nMTAwAIPBgEgkAp/Px4xCMpnE+Pg4JBIJy2Fvb28Hz/MVS27g1HcQj8erFsnMtynKQhufnG+4+24JM/AUp9u8vJzblNcGg4GJdZXzGijVOej1ekxOTjIZAKBkhFtaWuZcxdFCqFQqhampKYjFUni9BoyM6DE5aYbb7cDwsBaplAQiURH9/b+A1VpqrxcIBKDXhyrmr1Ck4XC40dzsQXOzB06nFytWSHDRRX+DNWsuAMdx2L17NysKpLzOZDJQq9WwWCwwGo1shUIzWkKhEJRKJYLBICKRCAKBAFpbW5lBPxPcbjSvz3sj34hWeRR0CfbrX2tx//12+P0KmM39uOWWo3jPe5KsYCEejyMajVZ8tsWSgc8329Db7TwIkSEcjmJk5JTudSzmwosvdiAer9x4lErzWLvWj0svjWH16gno9THmUXk8HoyOjrLNoWqQSqUwmUzo6upCS0sL6zlZ7TzlcjlbbtKluEqlYl6X0WiESqVCIpFgN7bLVfK6V6xYAQDw+Xzw+/1sFTCzmrFWAdh8PZla738roFaT8tNpXk6/cyrjy/M8MpkM82JL404jHo/D4XAwbtNURqlUyrJHZraFLA8DjY+P4/Dhw7Ba7fif/2nC+HgbjhxZgcFBJdLp6uaoWBRh164srNZdLFtFoQAuv/yPMJsDcDg8MBgiUCoVaG1txYoVK9Db+/Z58TqbzUIqlcLhcGBkZATj4+MsR71QKMBisbBCq0gkgvb2dshkMkxNTSGbzSISKeW6V9uMXgy3G8nr897Iz0ccqRrKvQ/qpaRSKfzXf8nw8MOnYut+vwrf//46KBRD+MAH8uyLGxoaglgsZp/96U+P41vf6qkI2UilBfT1cejoAP6//y+Jyy4rwuVyIZvNolgsYuXKMbz+eh/s9hwuvzyJyy5LYv36MMTiHILBIAKBADye0JydZWinervdjubmZmzYsKEugWjWQyQSYc22VSoVLrzwQtYNijbrGBsbY6Eao9GIbDYLsViMcDiMYrHImh7EYjEcOnQIGo0GOp2uZuUeve5U6kChUJx2fvD5Drudh8czu3/tXM3La3Hb6/VWhOA4jmM/4tTLnclthUJRkf5Iwx3UaE1OuuFy6SGVhhEKHWPHnThxHA8+uBmRSP0SfZUqieZmD1Kp1Cwt9ssue41Je1itfbj44ovraq3TMEgqlUIgEEAwGEQ+n0dfXx+0Wi0KhQIz4jN5DQBHjx5FIpFAPB5n9xQhBCdOnEAul4NOp4PJZJpVhT7zup9tbp/3Rn6+8a2ZxE8kEifDLAF4vV6IxWL09vbipz9dPSu2ns2K8cMfduLmmycAnFqyUW8olUrhggv8+MhHUnjmmZVIJunrYrzySmm5/fvfi7B6dQDxeJzFRLdv/yv+5m92YvVqArvddrL5QMl7CAaDdYWKlEol6x9JQyq0W/1c3aYCgQDcbjdisRgKhVIRSC6Xw5EjR5h6n8/nQzabRTgchlarRSgUAiEE8XicCT05HA5IpdKKHzvajT4UCs26Icu9PovFUlHhJxj42bjnnjzuuENcEbJRKAqzmpfP5Pazz0rw4x+vgN+vgMmUxN/+7UF88IMckskkYrEYkskkbDYbOjo64PV6kU6nYbfbAVRym8bs9Xo9kskk4vE0Jif1+POf1RgcDOL48QJOnOhFNivBRz+6E1deKYJMJkMmk0Eg4IfT6UUkcuo+1OszcDq9MJsnYLe70NzsgV4fQ3m3O4lEApVKBbPZDIVCAaVSiebm5rpdk8rPP5fL4cSJE2z1S6U1pqen4XQ6kc/n4fP54PF4IJfL4fF40N3djWQyiXQ6DZ/PB7PZzBwanufBcRzbsxgbG4PJZML69etnzWGpuH1eGflasb+54lszN2fHxsZYamAul4NSqUSxWMTQ0BACgb+p+tl+f6VHUiJzDvH4Svzwh27s3NmLiYmmmnM/eFCDyUkXDAYdyzQwm1PgeR7T00Ag4Ecul6tZ7ENzmmUyGRwOBzQaDct+mbnJTHPh3W43OI5Dc3MzbDYb27+gRjqbzcJoNDLj7Ha7EQwGWVoZlV4Nh8Psx0ylUiGTyaBQKCASiQAoVfvZbDaWAtrU1ASz2cy62FPMtX/SyJL6cw3Vzv222/QA6mfXzOT2I48k8OCDK1lxXDCowSOPbEY2+2dcfDGHpqYmcBzHeFatkxF1lrxeFf7wBxmOH9djYsKKiQljzZ6nJ04Y8c53ysDzPGKxGPL5PFau3A+LZRItLdOwWCag08UrDDqFXC6HTqeDRCJBc3MzlEplVW6XZxpZLBl8+tPjeM97kmwlQjPiIpEIW60Ui0VkMhlWkEQIgUwmg0qlAs/z8Hq9rEq1XBAvEAigWCxCIpGgpaWFNaNXKpUVQnkUS8ntM27kOY67GsD3AIgB7CCE/MtixptPc+tqWTT1LtjML6BQKLAH1ZMGgFgsVrPs3mI55VXT7JJXXzXjG9/QAFhR9XObm6O4+OIotm4NwOkcw9RUAlqtGuFwmHnRNM2xWj9IqVQKi8XCBJ6oVy0Wi5kgGT2/cjXLffv2Mb12ABgZGcH+/fuh1WphMpmYNg29mWlGAM0k0mq17Jro9XpMT08zj45WvlLN73Q6Da1WC51Oh3w+D7PZzGRiZ+6LBAIBZLNZli9vMplYylojs6QagbPFa/parXO/7TZ92SarDDPDNDO5/fjj/bOqn3M5Kf7rvzbiqqt8TJJCJpMhFAqdlKng4PWKYbMVGLeTySQef7wHv/3tBXOem16fgEyWZWES2uBl5cq9Nd+j1WphtVohlUqhUqkQCoWg1Zbuu2rcnplp5PMp8e1v9yAcfgObNo0iFApBp9MhHA5DLBaz4imxWAyZTMbm1tzczDKG/H4/pFIpJicnmWPT0tLCiq/S6TTa2togFouh0+lq8hpYWm6fUSPPcZwYwIMA3gZgCsAbHMc9Rwg5stCxyuVzqZdanpO7mCyaanov+XweIlFpeUlDFmKxGO973x489tjFM2LreaxbF0UikQOQw+TkJAgheMc7JPj2t4vI50vFHmJxEf39XnR3H8WGDW709JS8hpIuemnDiqrr1YJUKoXT6YTNZsOWLVtw4sQJjI6OMrElGpKpJtdKrwddWtIcYFrJR9PZaJ4uPXcA7ManOvE8z7MqRblcjng8DrfbXdG5yeVysbJ4qjFCGz1UUxgMh8MQiURQKpVMadNisUCv1zc0S2qxaCSvgeoSAjQ7Y7HnPpPbwWD1vSjaj9TjCcLrNWPPnlYcOaLE+HgTjh/XoK8vgx//eJBxW6FQoKsrMmscvT6Ozs4wentjaGvzo6cnimx2HKlUCuPjtVN4gZIMb3NzM972trdBJBKx+z0SiczJ7WqZRtmsBE8+uQpbtoyA53nk83mmkTRzhVJeeUoIYXF1kUjEpIabmppgMpmYV+/3+1EsFlEoFGryGlh6bp9pT34LgBFCyAkA4DjuaQDvAbCgm4H+0tFUvmo5uYvJopm5OWsymTA2NsZ02DOZUlGEQqHApZdOQSZ7Ez/5yVpEo3KIREXwvAQvvmjH9dfH4HSOQaFQwGazQaVS4qKLPOC4HLq7j2Lr1hh0OsDj8SCdTiMeNzDizZXDTpeQNLe2ra2NKfDRZSwtHPF4PDWlSZPJJPL5PJTKUqYPLbOmRS5SqZSlztFrks/nkc1moVKp4HA4YDabWfk5cGpFQSt/g8EgnE4nLBYL4vE45HI50+RQKpXIZrNVFQatViuTR6ArAb/fj4GBAQwPDzcsS6oBaAivgdoSAuWVlY3kdi1Zabk8j8997iKMjmqQz88OuRw7psDEhAdKpYKF9jZuzGP9+jE4nV4MDKRhsUygWPQwQbpMJgO/P45isVhzfjQ3XSwWo6enB+3t7RUGXqPRoKurC088UcBXvzqAUEgNiyWDz37Wi+uuizGDWiujKBwurWypVoxWq0UkEmHOFY2nG41G2Gw2JBIJls/e3NzMvgvK7VAoxFa7tOivHq+Bpef2mTbyLQAmy/6eArC1/ACO4z4F4FMAKqRoy0F/6WhVZbWc3Pm2GJuZVUBlPWdmEFDtdpFIBJVKhWCQw9GjnTh8uAP799uRTJZIVSyeuiF++1sOH/xgaUMnnU5Dp9Phi18sbZSm02loNBoWhuF5Hj6fr+aFo9WFtNt7oVBgujCJRAJarXaWcUilUojFYuB5Hna7veoGp1qtZkqRtPsNTZ2jZesqlQoGgwHJZBJisRiFQoHpwXd3dzNNb5qFIJVKWd7xTBnkLVu2VMQca+2LJJNJGAwGFiagN1q5XPLpZEmdIczJa2D+3CaEQKlUVkgIJBIJxsH5nHt5PNpmy+Hv/96Fq68OMW6rVCYAOXzoQwfwyCObZ4Vsslkphodre406XQpHj8bgdBZYsVxzcx5f+MJriMfjUKvViMfjiETyTEGxGjiOA8dxkMlkTFROKpWyzkm0+Ue5Q/fYYzwefngTWz37fErce68T6fQx3HVXSXa3VqZRKbwaYqtWymuz2YxMJgNCCHQ6HbZu3co+m4Ynx8bGQAhBe3t7Bbfj8ThMJhO2bdvGvsN6+exLze0zbeSr9YurqKUnhDwC4BEA2Lx5c9U6+/nk5M6VRTMzX5cuO2nfUACs+0s8Hkd/fz9kMhn+7/814Pe/bz8Zcqne/k4uL2BgwI22tilmJGlLu5I340ehUMD09HTVjSwKqgGj0+lY4wK62UM9eQDo7OxEPB6fZRx4nmebtkBpRdLa2lqxwelwOODz+dhmaTKZRLFYhEajgUajYUtjm82GgYGBqkqStMovkUggn8+jvb0darUaSqWSkZhqd1DCz7UvUqsMnBq9ZVbdOievgflzm4bJ6LlKJBLE43G0tJQaX8x17jPj0dPTctxzTxt27dJBIhHh4EEpRkc1+O53/xfvelcGJtMJPPxwG3w+BTgOIKTydCyWBHp6Yli5Mo2OjiDU6iFIpdGTRU8l5U9qoIPBIHK5XF2HhfZLNRgMLA5NK0ypVLROp2NcnenQPfnkqioZbRI8+mg3/vmfS4axWqaRVMrjhht2n+yjIMb09DRMJhPWrl2Lpqamqvsf5UkaC+F2PSw1t8+0kZ8C0Fr2txOAe6GD0ItE5UUBsLgZvRhzZdGUx718Ph8LV4TDYTidzpMpUTxEIo5V8b35Zj+ef74dhcLs5avZnMa2bUFs2uSBxXIIHJc5mSNeMsTxeJxtUNUT/5LJZJBIJJDJZCCEsK7sIpEITU1N7Meit7cXWq0WmUwGPT09GB4erjAOmUyG9ZC0Wq3Q6/Vs8zQQCFQISHV3d8Pr9eLw4cOQy+Vso1atVrPYOfXAq6HcYA8ODrJN4ZkFJguJJ85F9GVW3doQXgOVZf0AmDSGWCxmzSHqnXs6DXz5y9JZ8Wiel+DXvzZXPDc0pIZON4He3gAefvgIisUiHn74QqTTHDZv5tDTE0VnZxiEBFn4we12n9yjKcWKs9kskskkE8qrBeqYiMXiiv6oGo2G3c8ymQzNzc1oamqCSCRivC536AqFQs19BK9XxlaI69cn8bWvmfDggy3wemVoakrhxhv3Ytu2Kej15gpur1mz5i3F7TNt5N8A0MtxXCcAF4APAbhpoYPQi0TlRv1+PxKJBDo7OyvyY+t5i+VxTbrDDQBTUwR//rMeL72kwOgocP/9r7A89cce66tq4E2mDB5//H/B8yUt7Hg8w3qcplKpqpkwFGKxmKVu0U0buVzONn2o0S8UCujs7GTeOyGEGfzh4WFMT08z6VKa4khTLNPpNPPq6bKXypvS7jsbN24EIQQajYYp5c1cRi7kuwEW54XMh+jLqLq1IbwGStcvHo+zyspyCYGZ567T6WelGL7rXUAwOL8K18lJKbZuLYUBPZ5S7PyOO/ZArVbD6XQim83B602gUJCwnHkayqN7R/Xi6zStlud51niaeuW0nV82mwXHcVi7di2USiUIIVCr1XjpJSve+14lpqc3wWxO48MfjmPt2kMn4+VxhMOz2+yZzWns27cPcrkciUQCa9a48IMfHMLGjRsxPT0NjcaMVEr1luf2GTXyhJA8x3G3A3gBpVSzHxFCDi90nPKLlMvl0N7evuA8Uuo9SKVynDhhwc6dTdi1y4LjxyvJEwiY0dISQygUQjhcvUNROCxHIhHH5OQkisUistls3TCMQqFAX18fqwLVarXgeR6RSATJZBLZbBY6nY7tDxBCsG7dOmwqtZkBUBlu4nn+ZC/IKBMO83q9TIM6Ho8zZbtoNAqRSASXy8VCMul0Gnv37oXD4ai7jJwPGumFLCMjXheN4jVQef1ozrXD4YBYrMdrrwF79pQeb74JvPOdwHe+U/n+DRuAl1+uPrZcnsc//EMIJtMYTKZx2Gxy0FA5FaCLRqNoPalsJ5PJ8Ic/2PHjH7dCr5/GunWH0N8/DrG4Orc5jmPyuKOjo+B5njkN4XAY+Xz+ZBclC4s5y+VyrFmzpoLbO3ak8MUvngo3+f0qPPTQenzykzw6Ov6Cq656Gb/85TUVXZ5kMh4f/vBhTE9PQyKRCNyugzOeJ08I+R2A3y12HHqR6PKMhivmU8Hp9abx+ut6vPyyEbt2mREO1z7tI0fM6O4uhYZm5sRzXBFtbZPYsOHgnBoxdJlKy/ppJSiVGaXVoVS1kRCCfD4PtVoNjUZT0SoPmB1u0uv1UCgUFW3F1Go1OI5DKpViPz46nY5lztDybKVSyeL0NENmsZ7KuWCcG4lG8RoARCI9AgE9XnstjZ07czh0SIaxMTIrVt5UVktHud3UJIPZ3IpQSIJiUcRel8l43HLLn7Fq1QQymQx0Oj3bdKerBboXQ73sn//cg/HxMD7xiV9DJqu9GqXZWFTRkTorlNtU+VQqlbJK0Xrcrpb+mMtJ8dRTa/CNbxzENdeE0dT0Op59dh1CIQ1MpgQ+/vERXHaZD9FoKSlB4HZtnFMVrwspGig/9u/+biUGB6trZIjFBQwM+LBq1SjWrJnEmjVKABooFAp89KPH8PDDK+F0TqC//yj6+o5BrS4J/Vez7zSlimpi09xyGjYhhMDn8yEQCMBoNLJGvTTjgG6i0u7t5edy/PhxAKdITCsAxeLSzWEwGOD3+5nBp5V8VqsVgUCANWYASlWMGo2GbSAtkzj3WxI//znw/vcDpW0b5clHdezfXzouFjvF7Rtu4HDttUfx7LMS7NjRBZ9PDoMhjmuv/Qu2bnVBIilxKhaLsWpMhUIBhUIBn6/UmP2ll15CMBgEQNBfpT91IqFGU1MeYrEYIpGIecNUTA8oGdTT5fb09OxQDFBq8+h0OhEKhbBt2wlcdNEYRCIRstks1q9fj2DwVD0LhcDt2TgnjHx5xxqa60rL7sViMUZGRrB27Sa89hpQLAJXXlnp+V58cbLCyOv1WaxbN4X166ewapUHra36kyXMMYRCaYhEIkQiEbS2HsBddz0PjqtenES9maamJmQyGbS0tMDn84EQwjal0uk0k2KlFW/Us6dZQrTAg1bClXdVoj9WNAOIFsrQIiRaik0NOl0x0Hz3YrGIaDTKNmepjozFYmE59G9F4i8XOBxxEDI7LCgSEbS2JrBqVQ5vf3sTNm0C1q8HOK56ify114axdeuLkEqlCIVCJ/d4ZKyc3+v1MkGucDiMYDBYdyUaCDTh6NF+HD3aD5fLgZ/85OmT4c6Sdw6cygyi3Dxdblssa6oqtJrNpf6tpQ3m0j5TsViEzWZjnBe4PTeWvZGfmfqYzWbhcrlgsVjA8wbs3GnAX/5ixKFDRcTjIqxbF8dTT01hamqKHb9qVRwrVsixevUY+vuPo68vjmIxf1JnJQeXy8V00HO5HMbHx9nnz9zoorKiZrMZJpMJTU1NTE4XKHUrGhoaYpWiNF4vkUiYSh8AVu6vVquxZs0alrcPnGoiAJy6oUudalys0GRqagoymQwmkwn5fB6RSAQ2mw1Op5OVUNNNMqoP7na70dzcDIvFApFIxLI3BCwNotEoCBmCRrMJZnMSnZ0R2O0urFuXx6pVeUgkWYRCIfT19YEQgsnJUnhyZom8QqHA5OQkEokEFAoF41smk8H4+DgrRksmk5iYmKg5n+lpOw4dWomjR/sRCFjY801NJU9YLpezlFsab6dx/cVw+7Ofnca997Yimz1ljmSyPG69dQgej4f1ElapVAgEAkxUjEoCC9yuj2Vv5EdGRhAKhVAoFJBIJDEyosSBAxuxf38rhoebZsUtDx7UYPfuUYRCw9DpdLDZbOjsdOOLX9zPZFSLRTGCwQhrTEwFimqBGlO66UmzBmhhE830KRQKTHNjfLxUyk0zDmhzEfrDQDfZhoeH6xZClNcItLS0sJQ2qgtPtTi6urqQz+cxPT0Nu92OSCTCKltbWlpYqCifz0Ov17+lxL2WK0ZGRhCNhvDEEy8gm40zb1Qmk0Ek0sDnCyAWi+Ho0aMYGBhANBrFoUOHEA6HoVKpYDKZkEwmMTY2VsbtIhPPKhQKrMtRNXAcxzYmlUolPJ5O7Nq1bUZP3Ty+9KUompubUSwWMTY2hnA4DJ7nmRefzWZBCDltbr///TlksyN46CEngkE1TKYEbrrpEFasOAi1utSzgK5g16xZg8nJSXavCdyeG8vayEejUYyOjoLj9HjssdXYudOEQKB2WzOzOYlNm6YRi5W0nWmckHrRtBdpqTIvUlcjxmg0QqlUwmw2s6wY2sg6FouxsIxarUZXVxckEgkjP90Upc2v6UYorTTN5XKwWq3I5XJwOBx1N4hmNjqgXn15+hlQumE7OztZqIbuW5R7UR0dHUgkEhgYGGjE1yNgEaDc1mg00GrlEIlKP9C0IpOmx1JhtxMnToDjONYir1AoVHCbykxEo1FWDFcNYrEYzc3NEIvFUCgUzBGRyWTYvt2FTOaP+PWvtyEU0sBqzeDv/m4K27eHWapnueJiI7l96aVTuOii0gpaIpGcDMc4oFQqWcU2/TExGo1obW0VuD1PLGsj73a7odFoUCwW8ac/WRGNVpYtc1wRAwMRrFo1hgsu8KGlJQygJDAkkahYJajP54NIJGIFSrVApXO1Wi22bNmCYDDIfhRooVF5zq/RaERnZyd7v9FohFQqZelh0WgUkUiELalpTLGlpYUVcvX19bFzrbZBNDNXl0oymEwmttwFKjMJ5ivzIGDpQLlNNyY1Gg0MBgOLk+t0OlbfQLVXaIqtWCyGyWRCMBjE9PQ0gJJXTEOGM0FlBKRSKbZs2QKr1YrJyUl4PB62cU8dngsvPIHLLnNj3bp1rEYjmy11Oys3oI3mdiaTYZouVquVcbu8Z4LA7dPDsjbyyWSSCTVdcIEfL73UApWKx8qVE7jwwgAuuywDjSYDr9d7UlSrwMIptCy5PDY9E3S3nzbCoNoS+XweBw8eZBV+NDwDgDVQoKmL5SgXFTKbzdDr9UxQDABrAkyrWqlHU09HemaurkqlglarhUqlYlWBANj85ivzIGBpUc5toOS9GgwGlupqNBrh9/uZxEQwGGTSzalUiqmJ1gLNsqIiddFoFBzHYXh4GPF4nHn9dLUai8WQTqeZdjs18MBssaz5cJs6IZTXvb29s0Io5dymVeG0YTYVBqSV6YDA7dPFsjbyarUaPM+jpaUF73vfJK68cgKrV8dgMKjZRpJEomVl+qFQqRVevYpTiUQCm80Gu90OqVTKuhtRuV1qvEUiEVOGDIfDkMvlsNvt6O/vh0qlwujo6Kyxy72JakQUiUTYsmULgJJhP3DgACKRCCwWCwwGQ82U0PIsAboRTY1BuQZPuQreMpMBEDAD5dymFZlyuRwrV66sCNVQox4IBJjmSy3Q/RfaaJ0WPNHwj0wmY5u1lAdUAtdms6G/v79q4/eZXvJc3B4ZGcHhw4erSoJXM/Q0jk7bCtJK7HA4DLPZDEJIhSEXuL0wLGsjXy5ncNllqpNftJgtA/fs2YNQKITp6emTeb7VQVO59Ho9qwTdsmUL3G43pqenMTk5yfJ/KWlpdySDwcDeR2OC2WyWeRjZbHZBehQA2DnREm+/31/R5LqejvTM6l9arVi+OpivKJiApUM5t51OJ+NPX18fCoUC/vrXv57s4eup2+ZRoVCgra2Nxe5VKhW2bNmCkZER7Nu3jxn3pqYmBAIBAKVVBM/zbI9JKpWyVe9cvAbm5nY9SfD58Jo2wXY6nSxUOtOQC9yeP5a1kadf/MjICB59NI0nn1wJhSKKDRt2YvPmowBqbzDR+Dpt3UcrQY1GY4UnMzw8zKpCqSE3Go1IJBJsQ8pkMrEMnF27dkEul8NisaCnp4elhM1Xj2JwcJDlONObKp/PIxQKsabEfr+/QlCsWghHIPi5Deq9Dg4OspTIXC6H119/nbXHqwbaXJs2Vy9fdWq1WqbN0tPTg0OHDkGr1bJ7gBbPUV5ZrVbWr9fn8zEJaZvNxhRZa3nJ9bhdTxK8XgcsgddnBsvayAOlDaFf/jKG0dEkbr31h9Dp4lWP4zgOFosFdrsdFosF4XAYoVAIkUiE9RalRSE0HqnX62E0GiESiZg3TUmWTCbR3t7ONpWAUvs/mUyG1tZWZDIZHDx4ENu2bVvQjn65UBqNqdOcZgCIRCKIRCLQ6/XLos2dgDMDml1TrrNfCwqFAna7HUajkW2+ut3uilx5usqUSqWM2w6Hg60E5HI5DAYDk8+w2WxMa76UqCBhDTz8fj9rRr0Qzs0lCc5x3LJq4fhWwbI38n/84x8hkRxGmZ4RA89LoNGUZHK1Wi2rPA0EAsyT4HkeKpWKVcXJ5XJIJBK2dKSbSA6HA6FQCLFYDLFYjIVoqEeTSpWq75RKJWskApS8l/KmHHOhPDOASifTjd1sNgufzwer1bos2twJOHNwuVzYuXNnzc1TmsNus9kgl8vR3NyM6elpKBQKJJNJVphEDSp9vre3l3HF6XRCq9UikUiwatRUKsUKmTiOQyQSYTIcdOVKuyUtlHNzSYLTtE2B22cXorkPWVpQ4SGKVEqJvXvX46mnPohvf/uuk1WrJc+cljQHg0GkUinWqEAmkzEpX4vFwpasAFgur0QigdPpRE9PDzo7O9Hd3c28nJaWFhY/p82EAbCCqIWAfh5tp2exWFgOvlQqhdFohMFgqHgPTZ0UcP4glUqxpiAU1NjS4iSqP0SzW6g3nEqlWPcuGvajCqQ0zx4ocU0kEsFqtaK7uxttbW2w2Wxoa2tj3Kaxc6qOCoDlvC+Uc+X3ksPhYKFMi8XCqnZpsxEKgdtnHsvek29ubobb7cTERAuOHu3HxEQbU9szGmMsB5jjOITDYfT09LCbR6fTsdzhcmlVuulEl7UzN5HoMrU8fkjTuspzc0vqftXFlWqh2gbTwMBARaMCIQf4/IdarYbdbofP52PfNe0JQDc8pVIp2+iXSCSs/WNraytrLp/L5aBUKlEoFFgjeIulJEkwH26PjIwwqV46DxpCXCjn5pIEF/LblwbL3si3tLTAYtmGH/94RUW5tVTK493v/ivzftLpNIrFIkZGRpiMb2dnJyKRCJMfEIlErN1YJBLB//7v/2Ljxo1wOp1Vl4vlG0F2ux07d+5EKpViRRrpdBrr169f8DnV22AScoDfGqAVpNu2bcPU1BRcLheLY5fXPhSLRcRiMRY3j0Qi6OrqYqm+tDiOOjtTU6UWlFTHqBbXylMX9+3bh3A4zFKG0+k0TCbTaem/CNxefuDqtaY729i8eTPZvXv3rOej0SgeeCCI733PhkBABaMxjuuu24mrrvIx/Rkac7RYLJBKpSgWi7Db7ZienkYsFmMxdblczqpoU6kUxGIxtmzZAkJIzWwWiqmpKQwODiIWi0Gn02FgYGBWPL5e9sB80YgxBFQHx3F7CCGbz/bnVuM2/Z4DgQBGR0dZbjvNmAFKqYy0kTqVygDAujWl0yXVVCpxQXuo8jyPFStWVMhf1OJRNBrFyMgI3G73yQbdzRUd12bOV+D28kM9Xp8TRr4c0WgU+/btg9frZaJFwWAQCoWCSZBS3Qye59He3g6ZTIahoSFEIhGoVComUSwSiRCNRiEWi7Fq1SpWkETzlU+HwOXd3hczloAzg+Vk5MtBeR0Oh9mGaCAQYKJ25X1RqcR1R0cH47XRaIREIkEoFKpoAq/X61mz+sVwUeD28kY9Xi/7jdeZ0Ov1WL9+Pbq7u1l5f1NTE2w2G4DSMtBsNjMBMrlczjIVisUiyyagIkgikQgcx7HmxD6fDx6PB7t27aor9FQN5TrfHMcxvXdaui5AQC1QXre2trIm7p2dnWhqamI1H1arFQBYg+tyXtMqWeq8cBzHssBoK75QKIRXX30Vg4ODArffQlj2Mflq0Ov12LRpEzZt2oTdu3czg06Xsul0Gn6/HwaDAVNTUydb+ZW0NGiopVAosDQyqu1BFfnUajUSicSCc3jLc+ApZup+CBBQC+W8BoDdu3czrlJu02bxxWIRU1NTUCqVLDZPvXzKa5ouTLlNx6gnM1ALArfPXZxznvxM0L6RuVwOiUQCLpcLIyMjTEs9n8+zBiKtra0sZUskEkGv10MqlUIqlYLneabUR7WqF+qp0CV1OYTsAQGnC8rteDwOr9eL8fFxJqBHm8WEQiFYLBaW9kgIYbym/Kfcpm34TscLF7h97uKcN/I0F1ij0bBMGqlUCpvNhmg0yvTVvV4v1Go1Lr/8clgsFshkMqhUKpaOJhKJmBdECzoWmsNbngNPU98ymYzQpUbAacHhcDAVVUII0uk0aw5P0xxpavAVV1yBNWvWsIKmrq4ullxAUzEpr4GF56cL3D53cU6Ga8pBc3N37doFnU4HkUjEujglEomK7AO6PNVoNCwuqdPpWLeZRCLBOjvRDdqFeCqCOp6ARoJylXYVKxaLzIOnKZQ0Tk6rW4FS/DwSicBsNkOpVDKPncr4Agv3wgVun7s45408AKZB09raiqmpKSbHqlarIRaL0drayjINaAqXzWZDa2srcrkcYrEYBgYG2OYSlWSdbw6vkBYm4EyBEIKOjg5wHMfa3snlcojFYvT09LCVann2S29vL8t+6enpQU9PT4WM70Ly0wVun/s458M10WgUg4OD8Hg8GBsbg1KpRC6XY81DqG4GXVbWyhKIx+Po6+uDVCpFIpGAVCqd18YUvbl4nodGo2GbWgvNXhAgYCai0SjC4TCOHj3KNllzuRxr7lEeMqmX/UK9cIHbb00syshzHHcjx3GHOY4rchy3ecZrX+E4boTjuCGO496xuGlWRzkJaczQ5/Mxtb5y3Yxydcla+hlUYmDz5s0VUgP1IKSWnZ9YLtzWarWsojsYDLJCPqp1RLldj9cABG6/hbHYcM0hADcA+EH5kxzHrQTwIQCrADgAvMRx3ApCSO22NqeBkZERhEIhpl9tsVhYk+7u7u6qS8tG62cIqWXnLZYNt2nee6FQQD6fx/bt2884rwGB2+cLFuXJE0IGCSFDVV56D4CnCSFZQsgogBEAWxbzWTNB9biBksYHTSezWq2w2+01vZVGZwkIqWXnJ5YTtyUSCQqFAlpbW2E0Gs8KrwGB2+cLzlRMvgXAZNnfUyefmwWO4z7FcdxujuN21+o2Xw0zu93T1n0+n68uCU83PlkLQmrZWw7LktuN5jUgcPt8wZzhGo7jXgJgr/LS1wghv6r1tirPVRXJIYQ8AuARoKTvMdd8KKp1u6dx+LlI2Mg2Y0Jq2bmL843bjW6fJ3D7/MCcRp4QctVpjDsFoLXsbyeAhu7WVOt2LxaL0dnZedZJKPSmPDchcHtuCNw+93GmwjXPAfgQx3FyjuM6AfQC2NXID5jZ0am1tRUmkwk9PT2N/BgBAmZC4LaAcwqLTaG8nuO4KQDbAPyW47gXAIAQchjAswCOAPg9gL9vdPbBmYhBChBAIXBbwPmCZaUnz3GcH8B4jZfNAAJncTr1sFzmslzmAZw7c2knhFjO5mSAc4bby2UegDCXajgtXi8rI18PHMftXopmD9WwXOayXOYBCHNZDJbLfJfLPABhLo2cxzkvayBAgAABAmpDMPICBAgQcB7jXDLyjyz1BMqwXOayXOYBCHNZDJbLfJfLPABhLtVwWvM4Z2LyAgQIECBg4TiXPHkBAgQIELBACEZegAABAs5jnFNGnuO473Acd5TjuAMcx/2C4zjDEs6lpt74Wfr8q0/qmY9wHPfls/35ZfP4EcdxPo7jDi3VHE7Oo5XjuJc5jhs8+b38w1LOZ6FYLtwWeF0xl/OC2+eUkQfwIoDVhJC1AI4B+MoSzoXqjf/pbH8wx3FiAA8CeCeAlQD+9qTO+VLgxwCuXqLPLkcewBcIIQMALgTw90t4TU4Hy4XbAq9P4cc4D7h9Thl5Qsj/EELyJ//8K0riUEs1l1p642cDWwCMEEJOEEJyAJ5GSef8rIMQ8icAoaX47Bnz8BBC3jz5/ziAQdSQAF6OWC7cFnh9CucLt88pIz8DHwfw/FJPYokwb03ztyI4jusAsAHA60s8ldPFW5XbAq/nwOlwe7Ht/xqO+Wh8cxz3NZSWME8u9VyWCPPWNH+rgeM4DYD/BvA5QkhsqedTjuXCbYHX5yZOl9vLzsjPpfHNcdytAK4FcCU5w0n+p6k3fjZwxjXNz0VwHCdF6SZ4khDy86Wez0wsF24LvD73sBhun1PhGo7jrgbwJQDvJoSklno+S4g3APRyHNfJcZwMpcbSzy3xnJYUHMdxAB4FMEgI+felns9CIXAbgMDrqlgst88pIw/g+wC0AF7kOG4fx3EPL9VEaumNnw2c3KC7HcALKG3CPHtS5/ysg+O4pwDsBNDHcdwUx3GfWIp5ALgIwM0ArjjJjX0cx12zRHM5HSwLbgu8PoXzhduCrIEAAQIEnMc41zx5AQIECBCwAAhGXoAAAQLOYwhGXoAAAQLOYyyrFEqz2Uw6OjqWehoCzmPs2bMnsBQ9XgVuCziTqMfrZWXkOzo6sHv37qWehoAziGg0CrfbjWQyCbVaDYfDAb1ef9Y+n+O4Ws20zygEbp//WEpu1+O1EK4RcNYQjUYxNDQEnueh0WjA8zyGhoYQjUaXemoCBCwKy5nbgpEXcNbgdruhUCggl8vBcRzkcjkUCgXcbqGoUcC5jeXMbcHICzhrSCaTkMlkFc/JZDIkk8klmpEAAY3Bcua2YOQFnDWo1WrkcrmK53K5HNRq9RLNSICAxmA5c1sw8gLOGhwOBzKZDLLZLAghyGazyGQycDgcSz01AQIWheXMbcHICzhr0Ov16Ovrg1QqRSKRgFQqRV9f31nNrhEg4ExgOXN7WaVQCjj/odfrlwXxBQhoNJYrtwVPXoAAAQLOYwhGXoAAAQLOYwhGXoAAAQLOYwhGXoAAAQLOYwhGXoAAAQLOYwhGXoAAAQLOYwhGvsEoFov4j//4D/T390OhUKC1tRVf+MIXFlTevJAxvv71r4PjuJoPqVQ66z2hUAj/5//8H/T09EChUMBiseDyyy/Hq6++WnHc0NAQPvzhD2NgYAB6vR4qlQr9/f34/Oc/D4/Hs/CLUwfRaBSDg4PYvXs3BgcHZwk7zfW6gDOPs83thfLvm9/8Jm688UZ0dXWB4zjUk3Y+nfvmdLHU3Bby5BuMO++8E/fffz+uv/56fOELX8Dg4CDuv/9+7N27Fy+99BJEorl/Vxcyxg033ICenp5ZYxw4cADf+c53cN1111U8Pz4+jssuuwyJRAKf+MQnsGLFCkSjURw4cAAul6vi2KmpKXg8Hlx//fVwOp2QSCQ4ePAgHnnkETz99NPYt28frFbraV6pU6AKfgqFAhqNBrlcDkNDQ6yYZK7X6RhLKWH8VsDZ5vZC+ffVr34VJpMJGzduRCQSqTuPhd43p4tlwW1CyLJ5bNq0iZzLOHToEOE4jtxwww0Vz99///0EAHnyySfPyhiEEPKpT32KACC/+c1vKp6/+OKLidPpJG63e17jVMOzzz5LAJBvfetbpz1GOY4cOUL2799Pjh49yh779+8nR44cmdfrkUiEvP7662T//v1kcHCQ7N+/n7z++uskEonM+iwAu4nA7QVjOXG7Fv+OHz/O/r9q1SrS3t4+r/HKUeu+OV2cLW7X4/U5Ga6JxWK47777sHbtWuj1euh0OqxcuRK33377ks7rqaeeAiEEn/vc5yqe/+QnPwmVSoWf/OQnZ2WMVCqFp59+Gi0tLbj66qvZ83/605/w2muv4Ytf/CKam5vB8zxSqdS8zo0iGo2iWCwCAIaHhxuytJxLwW+u15ezzOtCIXB7brS3twMAwuFwxfNdXV3zen81RKNRvPnmm3jyySdhs9mwbdu20x6rHMuB2+dcuCabzeKSSy7B+Pg4Pvaxj2HlypVIpVI4ePAgjh07dlpjFotFhEKheR9vMpmqLk3feOMNiEQibNmypeJ5hUKB9evX44033phz7EaM8eyzzyIWi+Gzn/0sxGIxe/53v/sdAKCtrQ3XXXcdnn/+eRQKBfT29uLuu+/GRz7ykarjZTIZJBIJ+Hw+vPTSS3jooYcAABdddNGspeXpgCr4yeVy9ly5gt9cryeTSWg0mooxZTIZEonEac9pKSBwu/oYlH+ZTAZHjhzBl770JQDANddcM9/TqgsaMnnhhReQTCZx0003YWRkpCHaM8uB2+eckX/uuedw4MABvPDCC3j729/ekDEnJibQ2dk57+NHR0erbuq43W6YzeaKL4yipaUFf/nLX5DL5Wb9cjd6jEcffRQcx+HjH/94xfNDQ0MASp5Tb28vHnvsMWSzWfz7v/87br75ZvA8j4997GOzxtuxYwfuuOOOinl85zvfwbZt25DNZuF2uxd1MzgcDjY3mUyGXC6HTCbDPLa5Xp/rRjlXIHC7+hgz+dfR0YGf/OQnuOSSS+Z9XvVAveVf/epX4DgOH/zgB5m3vFgjvxy4fc4ZebpE27VrF6666qp5bfbMBbvdjhdffHFBx1dDKpWqSmCg5K3QY+rdCIsdY2hoCK+99hquvPLKWTd3PB4HAGi1Wrz88stsjOuvvx5dXV346le/iltvvXXWNX3ve9+L/v5+7Nu3D6Ojo3j55ZeZd9gIj5kq+LndbiQSCajVarS3t7MbbK7X57pRzhUI3K4+BuVfIpHA3r178dxzz8Hv9895LvNFMpmE3+/Hnj17sG3bNjidThBCGrISXBbcrhWsX4rHfDangsEgWbduHQFAbDYbue2228ivf/1rUigU5rMPckaxevVqYrVaq7524403EgAkm82e0THuuusuAoA89dRTs1679tprCQDyta99bdZrt9xyCwHANnyqgW4S/epXvyJSqZTceeedFZtES4lIJEKOHDlC3njjDXLkyJGqm66ELO+NV4Hbc49BCCH79+8nMpmMfOMb36h5zEI2Xo8cOUI++tGPEgDk3/7t32Ztfi415sPterw+5zx5k8mEPXv24KWXXsLvfvc7/OpXv8KOHTuwbds2vPLKK3U9iVooFAoL8gwsFktFrJvC4XDgyJEjyGazszwWl8sFs9k85/wWM0Y+n8fjjz8Ok8mE66+/ftbrTqcTQHVvrbm5GcDszayZcxsaGkJHRwcGBgbw05/+FB/60IeWhce8XGVeFwKB23OPAQBr167Fhg0b8NBDD+ErX/nKPM6qPqxWK5577jno9XpcddVVrOHHcuA1sHhuNyS7huO4H3Ec5+M47lDZcyaO417kOG745L/GRnwWAIjFYrzjHe/A9773PRw/fhwf+chHsHPnTuzfv58d84tf/AIXXHABDAYDVq9ejf/93/+tOd7k5CSam5vn/ZicnKw6zgUXXIBisYhdu3ZVPJ/JZLBv3z5s3rx5znNbzBi//vWv4fV6cfPNN1ddFtMNr6mpqVmv0efq5b2XN0ZIp9OIxWLLpjHCmcDZ5jUgcHu+SKfTC9pQroc//elPCIVCePe7341cLresGn40BLVc/IU8AFwKYCOAQ2XPfRvAl0/+/8sAvjXXOHMtaX0+HykWi7Oev/XWWwnHccTlchFCCHn44YdJR0cH2bVrFykUCuTxxx8nVquV5HK5quOm02ny4osvzvuRTqerjnPgwIG6ecBPPPFExfO5XI4MDg6S8fHx0x6jHO9617sIAHLgwIGqr4dCIaLVaklLSwuJx+PsebfbTdRqNent7a043uPxVB3nj3/8IxGJROSKK66oOZflCiwgXNMoXhOB26c1xmL4t5BwzVz3zbmAerxuWMwRQMeMm2EIQPPJ/zcDGJprjLluhFtuuYV0dXWRO++8kzz44IPkgQceYHHmu+66ixBSil9ptVryyiuvVLxXp9ORoaGh07uCC8Dtt99OAJDrr7+e/PCHPySf//zniUQiIdu3b58VWx0dHSUAyPbt2097DAqXy0XEYjHZsmVL3fn94Ac/IADIqlWryL/927+Rb37zm6StrY1IpVLywgsvVBz73ve+l2zdupV85StfIQ8//DD57ne/S26++WYilUqJXq8ne/fuXfD1aSTmG4cvx0KMPGkQr4nA7dMaY6H8e/zxx8m9995L7r33XmK1WonBYGB/P/7441XPab73zdnGQrm9VEY+MuP1cI33fQrAbgC729ra6p7IY489Rq655hrS0tJCZDIZsdvt5IorriC//OUv2TG/+MUvCMdxRK/XVzwUCgWZmpqa++ouEvl8nvzrv/4rWbFiBZHJZMThcJA777yzwnOmqHUjLGQMivvuu48AII888sicc/zv//5vsnXrVqJSqYhGoyFve9vbyGuvvTbruGeeeYZcc801xOl0ErlcThQKBenr6yO33357hYfWaMxF8EgkQnbv3k1+9rOfkeeff57s2bOnbpVrORpg5OfFayJwe9HcXij/tm/fTgBUfcycB8VC7ptG4Exxux6vudLriwfHcR0AfkMIWX3y7wghxFD2epgQUjd+uXnzZrJ79+5FzePRRx/FE088gVdeeWVR47yVsZQ6MOVaHuUpYzO1Pmg8luM45HI5OJ1OiMViSKVSDAwM1Byf47g9hJB5B38bwWtA4PZywfnK7Xq8PpOyBl6O45pPTqAZgO8MfhbD5s2bsWfPHrz88ssghCCTyWDnzp0YGxs7Gx9/zoMSjed5aDQa8DyPoaGhhirj1VPdm6uMm75eKBQglUohlUohk8kQCoUqysHPIJaE14DA7cXircrtM5lC+RyAWwH8y8l/f3UGP4th3bp1uP/++/GZz3wGLpcLKpUKGzduxH/+53+ejY8/p1DNqyknIgD2byOq/+hnDg0NoVgsIpFIwOVyYXh4GBs3boTT6awo404mkwiFQshkMiCEQKvV4vjx4+y1dDqNYrGIXC4HQghEIhHy+Tx27959Jr20JeE1IHB7IdixI4W775ZgeloKu53HPffkcdFFy5PbmUwGqVQKY2Nj0Ov1yOVyiEajIIRAKpWCEAKe55HP5zE4OLhgXjckXMNx3FMALgNgBuAF8H8B/BLAswDaAEwAuJEQUjfnqRFL2vMJZ3JpWWvpmM1mYbFYwHEcO5aQUvVfb2/vgucTjUYxMjICt9vNxlSr1UgkEpDJZJBIJEin0yCE4NJLL8XIyAj8fj9SqRSSyST0ej1kMhmy2SxLb1MoFIjH4+zmLH+9r68Pdrt91lKYYiHhmkbxGhC4PRNnkts7dqRwxx1yZDKn8v0VigLuumsYN92EWdz2+/0wm80LnstCuL1hwwYMDg4imUxCKpUik8lAo9Egk8kgHA4zHmcyGQQCAUgkEiiVSqbbY7PZ0NvbC4lEsmBeNywm3wgIN8IpzCd+t5ibZHBwEDzPV+TTZ7NZeL1e2Gy2Wc/zPI9CoVBzPrXOYd++fQiHw6xsfWpqCiKRCGazmZE8Ho8jkUjAarVCJpMhnU4jlUqhWCyiUChAo9FAqVSiWCyC4zjmKWUyGfA8D4lEAplMBpVKBb1ez4q+stnsrDjmQmPyjYLA7VOox20Aizb+DkcOHs/soiqrNY0XXxyu4HY4HIbf70d7e/u8eU3PoR63JRIJEokEcrkc0uk0TCYTWlpa4Pf7EYlEUCgUYDKZEIlEYDAYIJfLkc/nEQwGQQiBWCyGWCxGMBiESqWC3W5Hd3c3gIXz+pyUGn4roF78rhGxxVoSpwqFgnn0hBBW/QdgwZKnbrcb6XQaSqUSMpkMMpkMarUa6XQa6XQa0WgUExMTCAaDKBaL8Pl8SKVSsFgsTM5YJpNBqVSCEMJuppaWFhQKBebtbNiwAUajEVqtFn6/nxX0nKUYvYAFoha3R0ZGGhIzn56u3tXJ75/NbZ/PB4vFsmAp33rcDgQCmJiYQCgUQiqVAs/zCIfDkMvlaGlpYd2n0uk0tFot1Go1JJJS5Fyj0UChUIDneVitVrS0tKCtrQ08z2NsbAyxWGzBvD7nZA3eKqgnMdqIuHktdTuz2cxi8+WCScPDw1V/FOqJOCWTSeTzeSiVSvacTqeDz+fD9PQ08vk8RCIRZDIZpFIpkskkRCIRMpkM7HY7M+SZTAZyuRyZTAYcx1VkHxgMBkQiEUxOTiIYDCKfz2N8fBxOp/OcVKJ8K6AWt8fHx9He3r7omLndzlf15O12fpYYmNFohMFgmDWXucTJanHb4/EgHo+zcA1dearVaoRCITidTtjtduTzeRQKBebBU1DPX6VSQalUwu12Y3R0FIlEAoQQDAwMoL+///xWoXyroJ7EaCM0puup21XTyphL8rRa+Ih6KPl8nsUhp6en2YYp9ZyKxSIIIdBoNEgmk5BIJGhubobL5QLP8wBKN5XL5YJcLofBYADP8/D5fDhx4gRmhhzp56hUqmWjPyLgFGpxieO4BTsS1XDPPXnccYd4Vkz+nnvys7g9ODg4p5TvfLgdjUbh8XiQSqVYuIV659Rzpytik8mEiYkJcBwHQgi8Xi+KxSK0Wi0KhQIikQj8fj+OHj0669ympqbQ0dGxIF4LRn6Zop4Rdrvdi9aYnilxynEcxGIxhoeHq8ZC682nVp9Kh8MBjuPg8XiQz+eRSCSQSqVYzi/1ZpRKJeRyOfR6PTweD0wmE1QqFSwWCyYnJ5FOp9k5RqPRqto7FAqFAlarFUql8vzSHzmPUItLzc3NDekLcNttKgCnsmtsthz+/u9dWL8+hMHBSm7PJeU7H24nEgkkk0kUCgUWS6dOjEKhgFQqRS6Xg1gsBiGEhRnpvlKhUEA4HMb09DQLU1aDXq9Ha2srent7F8RrwcgvU8ylM12NmCaTie3gz2fTino11TbCZjYbdrvdyGaziEajUCgUMJvNMJlMcLvdGBkZgVQqhc1mY945AHi9XigUChiNRkxOTrJwi1arZUvU8puCEAKDwQCLxQK/349QKASfz4dYLIZcLlfzPGQyGVpaWnDBBRegv7+/IntCwPJDLW4D1XlNHYmFbMjedpsKt902c5O3eqNssViM8fFxcByH5uZmtgE8ODg4J7fVajWmp6cBACKRiKU8AqWuXDqdDslksoLXqVSK/ThEo9GKcE05OI6DWq1GW1sb07k/HQhGfhmhGpGrVbhVu0mowS33OPbt2weNRgNCSN0bg74vn8/D5/Mhm81CLBZjZGQEPT097CaxWCzsxtNqtex91KhOTU3B6XRCpVJBJpOxVYFEIoFEIoFGo0GxWEQ+n2dFH4VCATzPI5vNIhAIQKfTYXBwkG1s1YJEIkFLSwtUKhWKxSKUSiWmpqbOagWjgPljvtyuZ/wptyORCIaHh2E0GtkeUq3vfL7c7u3tZdym6bnz4XY2m4VEIoFWq0U2m0WhUGBx+Hw+z8I3ZrMZo6OjcLvdiMfjNQ07UNp8bWlpwRtvtOOBB9YiGFTBYsngvvtSJ1cpC4Ng5JcJai0La4UcqsUWyzdj8/k8wuEw0uk0Ojo66o6XTCbBcRzcbjcIIUin06ytXzqdhk6nqxg3FAphaGgIFosFO3d24qGHLkcgoILZnMJHP3oMf/u3SUxOTmJqagoWiwUGg4EVdEilUvA8z7wimiqZTCaRTCYxPj5e8xoplUqo1WpWEWgymeD3+6HT6VhWQzqdZsUnApYHFsLtavtB5dymXZxEIhFL7a13n5wut3U6HaRSKSKRCEQiETQaDdxuN+RyOcLhMLxeL1pbWwEAUqkUiUQCSqUShUKBpQHL5XLwPI90Oo1XX321ZihGLBbDaDRCJBIx73/nzhV46KE1yOdLmUI+nxK3355HOh3EHXc0Lej6C0Z+mWC+GTO1lq0zN2NDoRDzlsuXmdUyFdRqNUtVSyQSrOBIJpPh2LFjWL9+PbvBXC4X05P/xS9U+M//7ALPl4gYCKhx//2rkcnsxqZNYRgMBhSLRQSDQSiVSuRyOVbQRIud8vl8zXQwkUgEvV4PkUjEMiB0Oh0mJyfZHHQ6HbLZLICSByQSibB3715otVrBo18maCS3aYl/edZVtbEoOI7D0NAQ0uk0eJ6HWq2GVCqFSCSqye14PI54PI5CocA2Q5PJJAghcDgcSKVSUKvVCIfDkEqlbHVBvfpUKsWKmGqBpiuXUkV1iMe7cOSIDCMjakxMmDA1ZQRQGXbMZiW4914lbrklKsTkz0XMJ2Omnkc0M2OBLktpbnm18Si0Wi28Xm9FGXU8HkdLSwsikQh8Ph86OzvZDZbNZlEsFvFf/7WBGXiKXE6KJ59chfb2P7NlK/3RoJ4U7TVbDVKpFHq9HiaTiS1bR0dHWeWgTCZDT08PFAoFIpEIu3mz2SxLZ6Oem2Dklwcaye1sNsvCL5TbtXhNnZZ0Os3CI4lEAgqFAjabDT6fryq36WfRfHWxWMzy3XO5HFKpFACw9F+aEZRIJOpunBYKerS3a5HPt+Pll9swOWnG4KAc4fD8N5YDASXc7nHByJ+LmE9X9noe0cwsAbFYjHQ6DZvNVnM8CrqJFAgEIBaLoVKpWAjEbDYjkUiwoiiJRIJIJIKmpiaEQppZYwFAOFzaWKWEz2QydQtaZDIZDAYDbDYbVCoVu1mkUilUKhVaWlrg8/lgNBqhUpVikqlUCqlUCqFQiC2n5XI5crkcisUiAoHAvK67gDOPRnJbLpezH3zaxawWr0dGRpBOpyESiVgTcalUCrlcDrFYXJPbtPiOPiQSCXOaCCEoFovsQWPuM8HzYni9Nhw92g+el+Ho0T6k0xp85jN74HTm8cwzK07rWppMyQVzWzDyywTz6cpezyOauRlrsViQSCQgFouRSCTg9/uRSCTQ2dmJaPTUci8ajWJ0dBQGg4F5xalUiuUtG40lFd19+/YhHo+zijyTyYSmpiSCwfL5EDgcHqxbtx88z9f1aux2Ozo6OliMNJfLQSKRQCqVguM4xONxtkHW3NyMjRs3wuv1YnR0FBqNBhqNBiqVClNTU1AoFBUZOlQuQcDyQCO5TY08rYqmhUK1eK3RaGC1Whm3xWIxQqEQCoUCLBYLgNncps4CFcYr30ylUgXlSCaVmJ62Y3raDp+vGcFgG6amdJgZbgGAJ59chX/6p5+D4/4GhHAnz7OIrq4k2tpC6OvLoqsriqNHgR/9aH3FSlkmy+MjHzmyYG4LRn6ZYK6UyWg0inA4jKmpKWi1WpZLXu7FlKdEut1upFIpjI+PI5FIwGg0oqurCxKJhC2DAWDXrl1MUEmj0cDn8zHPRKVS4fjx4zAYDLBardDr9fD5fMjlclAoFLj11iE89NAqNDe7MTBwFH19Q9DrYwCAavZdqVRi+/bt6OvrY7HSTCbDshQmJiaYl6XT6dDR0YGpqSns2bMHQMmLU6uNOHxYib17RXC7N2Jw8FK8851/woYNEzCZTOx6lYepBCwt6nGbctXj8bBURbpaq8XtkZERjI6OIhaLoampaRav9Xo9RkZGkMvl4PP5oFAooNPp4PV6kUgk2KZqLW7TvSQajvF6vRWZXoQAL798GTyeZkxP2xGP6+Z9LYJBNbZtW41PfWoSItEkrFY32trSkMlEkEgkSCaTsFgsWLNGjWz2Ffzyl1sQiehgNqdwyy1HsX37NBSKhbUVFoz8MkKtruw0XqnVapHJZJBOpzE5OQmr1QqRSFThEZXHNi0WC5LJJBQKBbRaLUKhEFt2Hjx4EDKZDKlUCmazGcFgEIlEAgaDAfl8HplMBiqVimXC0Ngjx3EIBoOYnJxEZ+ckvvSlF8BxfM1zolkwdrsdarUaW7duBXAqY4KKMMlkMjQ1NSEWi7FqwRMnRjE6KsLRo10YG7NhdNSMqSkL8vlK2nq97TCbUygUClCr1VCr1UI8fpmhGrfLuepwODA5OYmxsTG0t7ezjdVa3DYYDBX7POl0GslkEtFoFAMDAxgdHYVarWY1FvF4HFqtFjzPw2w2I5vNQqVSzeK2z+c76SARjI6qMT1tQmtrAlbrKSPPccCRI6sQCJgXfB2amkoS2VddtQvT09MnC6P0CAQC4DiOrUI1Gg2uvjqEbduegV6vZ6sMtdq6YG4LRv4MoZFSquXxStpEIJlMIh6PY8uWLRXjzoxtFgoFiEQinDhxgsUwQ6EQBgcHYTKZ2GamXq9nYRqq5EgIQTgcRrFYRDweh9frRTQaZTFRoET4clCiFotFtjqgMgTledF0eU5LuzmOg0gkYrHb//7vVvzqV2uQSMgxF8bHbTAaS1o4FosFmUwGDofjtK61gPo4U7yWy+Voa2tjRra7u7tiJTvzeLrRnkwmGbfFYjHGxsaYpjsVrcvlcuw+6OzsRHd3N0ZGRljF9ehoEnv3Ehw/roHL1YHpaTsCATMIKek3XnXVi7BaAyyRQSKRoK0txIy8TFbA6tUEmzZJsH49IJcPYmxMgW9/uxW53CkTK5XyuPXWIUxNTbGVAsdxkEgkTD47n88zKQ+lUolsNgu5XI7u7m4WQlootwUjv0jM1JRubm6GzWabVZhUL5d3LtBc38cfz+PHP16BYFANiyWNz3xmAm972+yc9/LYplwuZw0IUqkUXC4XkskkIwwVQsrlcuyG0Gg0TDuGevj1ijfkcjkcDgfsdjtSqRTi8XiFrodWq8XAwEBF7rpYrMGuXRK8/HIr0mk7Lr98N8vuMRqNEIuzNQ282RxFT08YPT0h9PdH0d0dg9dbymemFYuCJ784nC1eU70it9uNSCQCoGTcqv14lHObCntRh4OK1NF0WrFYzDJhWltbWWFSc3MzisUi/ud/DHjhhQG43RbE49q680yn+3DFFQqEQiEEg0EAwJVXjuDSS8O46CINLr/ciaam8poV4IIL4ohE3sBPf7oaoZAGRmMc73vfm7jmmgImJlKQSqVM24aecywWY2nBiUQCkUiEJVBQzfuZP3zzgWDkF4FqmtITExMYHR2F0+lsWAcajuPw4x/n8MgjFzDPwO9X4Vvf6oZMdoIVR1SLbSoUCqZR7ff7mfciFotZtSmdI91oikajOH78eN2MGKq/0dXVBYVCwX4IJBIJDAYDLr30UnauxSJw9Cjwn/8J7NpVehw40Id8vrQM0OvTePe7j4HncyyNrbu7dDOp1Rm0tXnR0xPEihURtLf7oNNlkc1mWQGJXC6HSmWE1WpFoVBY8PUVUImzxWu1Wo1IJIKpqamKZhrRaBS//e1v0dfXh56eHvYZ5dw2mUwYHR1FIBAAz/PIZDIoFouQSCQoFApIpYB43ImpKTM0GiXe/e4SZ/bt2wePx4PBwQswNNRVc24cR+BwJNHREUVf3xQCgQDbC7vkkkvqnpfD4cC+ffuwadMotm49DrFYjGQyiWKxiGj0lNZ8JpNhjUJo1Wwul2Pno9FoIJFIWFj2dFdNgpFfBMo1paXS0i44x3Fsg4dmpgCnp6ZXjqeeWlOx9ANKOekPPNCMSy7ZBQAwGo0stnns2DFIpVL4/X62G0/b5FEJVJoxkMvlEIlEkEwmmdGvBrpcpTHRaDTKqvTo6sBkMgEA3nhjBL/73Srs36/AG28As1PjT8V5olEl/H4lenv1KBaLiMVi6OpK4Z/+6adoaopApVKylYRarUZf32rYbDam06NUKtlGNK1mFDz508fZ4rXD4cDw8DDS6TQTrEulUsxbpxlhwGxuE0IwPT2NTCaDWEwFj6cTLpcFXm8zPB4rAgEjC7eYzSF0d79c4QDY7dPs/1IpD5vNh9bWIFasSKGjIwKdbhytrSa2MsjlpGw/rDyLpxpoDN1oNLIUX4fDgXQ6zQqoxGIxtFotRCIR24cym81YvXo1JicnkUwmKxIsFsPrt4SRb2Qcsbx3pNncjptuiuO6605ZMGpAZxKfpiQuRECMghCCUKh6wYTfr2A7/3a7HXK5HGazGSMjI/B6vcyzjkajzHunCnl00woAK/AoB9Vrl8lk4HmedbCh+fRarRbT00lMTFjR0aEEUEpTczqd4HkJ7r9fjnqOdUdHGuvW5dDfH0VrqxGElApVstksent7sXJlni3jxWIx86LoNZuenkZra2uFINlif0zPNTSS23SsI0eOsG5G1MjX4/Xvf2/Cu9+dq+inOh+NFb1eD6PRiFgsxpwNvV7PUhgLhUJVbg8ODuLECeC5527A1JQZsVj9zwoEjEinRZDJTpGxo8OPT3ziRbS2BtHamoVCcUpYTCQSgeeVCAaD0Gg0TKaAKqPOp1KXEIK+vj5Wy5HNZtl7ent7kc+f4nb5CkGv1yORSDSU1+e9kV+oJkw9zOwd6fer8P/+30aIxfvxrneVQhv5fB46na5CW4MqKtLOMAaDYUHzUKvVsFgy8PmUs16zWDKz4uW06UYymYTRaIREImEyvYVCoWrxBoVcLofNZoPdbmfefqFQwPHjxxGPZzA1ZcHhw80YH7djctKOiQkNCOFw550vYevWINuwjcW8aGtzYnS05PWZTDmsXZvG+vU5DAzE0dMThl4PVpwC2AGAFabIZDLI5XL09vYCONVntvxazafI5nxGI7ldPhbdhPf5fKwV5Exey2QyRCIR/PSnwA9+sJKtMj0eGe64QwxgfmJatLcqx3EIBAKQSqUoFovgeTlOnLBicFCBEyd0uO++HDSaIku5NRhSOHKkrea4HFdEU1MQdvs07HYvikURdDod7HY7FArFyY5OYiQSKkxOBiGVljRsCoUCstksrFYrkznIZDJQKBRwOp0oFosYGRlhBr1cqK/8O6B7AjTbC5g/txvN6/PeyDeiixLF3XdLKhoRAEAuJ8Fjj/XhbW97DQCYB9Td3V1RvKPX61lcvBRDVs1rHtFoFKlUCu9//5vYsWNrRchGJsvjlluOwuv1gud58DwPnU6HeDzOSvzD4TCSyWRVT51CIpGgt7cXmzZtQkdHB/bu3QuNRoPjx3n87//mcPx4Ew4e3IyxMeMsGQOKEyfMuOSSknof1RS5+eZJ6HQxGAzHsHKlFibTqWV+NitlscfSuSxcV3w+RTbnMxrJ7fKxaO/RWCyGcDgMk8lUwet4PM56lT799JWzwoiZjBh33y3BbbfV/8wdO1L4//3/uuD19kOrzaC/fxoiEYfxcSO8Xh0rFgKASy/9E7Zu5RGPx09q0GRgMMQRiWghleZgt0/DZvOeNOrTsFp9kMlKP0xr167FunW3YWxsDBqNhiUgcBwHlUrFjLtUKoVarWbxfSprQDVsUqkU/H5/hUF/8803YbVaZ30Hi+F2o3l93hv5RnRRoqjVOzIUUrN88ra2NvT09ECv1yMej2PFihWQy+UYGRmBUqlkSndUsnSmfkf5sq/cS/j4xwG5fB8ee6wPoZAGZnMKN910CBdeOIVAoNRGj4ok0VgljSdWA9WI6evrw+bNm6HRGEA3+6kn8cgj7XjuufrGguOKaG2NwmgkUCqVCIVCyGQy0Ov1ePvb40infRgfn8D4uBoKxakfN0reheqKl2OuArLzHY3kdnmmC40j0+IcnU5XwWugVOeg1+sRCMxeXQKV90q1cMbPfibFZz6jQKFQipvH40q88UZnzfkdOSKF0znG9NiLxSKuv/5n0GiSMBpDEJV1qy41vm7DqlWr0N3dzebs9/uZQW1paWGpyDabjalR0sY209PTrJGOyWSCSCTC8PAwlEolLBYLpqamkM1mWShx5j7FYrjdaF6f90a+kUufWr0jzeY0NmzYgHg8ztLBgOopX7TIY+Y86HKZlk67XC5EIhH25crlcnz608BHPzoKnucZQTMZHlqtFrFYDB6Pp+7GKe36fsEFFyMa7cSuXcBjjwF/93fAunXAz35WOo5mB7S0SABUEstuz6Kjw49VqxK48EIRmprGASROlo5LmICUSCRiok9qtRqpVKpCk5ue+8wimVoNSmqRvFYB2VsBjeQ2zXTx+/2sbkImk4EQgvXr1yMej1d0DaPcrhVGtFp5/PnPMuzcmcZrr2Vx0UUqXHFFqQL78OHD+OpXr2EGvhpEoiIcjhicziBsNjcMhkMYHfVVHNPeXmrYThvRbNy4EVu3bq1Z7Uw95FQqxbo5cRyHDRs2AAD27t2LQqEAo9HIhPqoJEI2m2VNQSivac68x+OBw+GYVam7GG43ktfnvZE/3aVPufdBN0Buu02Nb32rp2J5Kpfn8clPjmLv3hNob2+vGpejinYnTpxg7e7C4XBFtarb7UaxWITL5UI2W0r3CofDiEQiLL+Xev/pdJpV8U1MTNTtLKPV6sHzHQgGu3HsmANHj+pw8KAEM38Lqslh9Pb6sHq1AZ2dAQwMxPHBD3ZCqYwydT86R1qJazKZEAgEkM1mEYvF4HA4mMgYzUqIRCKwWCxQKpVYv379rGterUGJ0AikOhrJ7VQqxUKLKpUK+Xye6QDt3bu3Jrc/9alxfOtbPeD5U/cExxF4vTJcfDEAKAEowfNe2GyHAeBk2LL6CkChSOHrX98JlWoU4bC75v4RTTlsampCb2/vvPYh9Ho9HA4H9u7dy/oMi8VivPnmmzCZTGhvb2cr7XA4zGpMuru7WfHh1NQUzGYzjEYjOI5jrf0OHDiAlpYWJnc98ztYSm6fV0a+VqbBfJY+5VkzNlsOn/iEC9deG0MgEIDX64VYLMY73tGLYDCIp55ag3BYC7M5hb//excuvtiDRKJQMy6XSqUQDoehVquZaNjx48ehVCoxOTkJna6kfZHNZhGPxyESiZjWeiaTwfHjx+F2u9nzdAO1GmhGTEl8aR0+/ekViMfn/pqnpwn+4z/S+M53JJie1sFsvgDr109helqPQ4ea8Ze/JJHJHMa118bY5hGVJQiHw+w8VSoV61tJi1uo1g0hpG4Iaa4YcyMzSc41LIbbM416IBAAIYQZLqVSiZaWFvA8D7fbjWg0CpvNBqfTiWAwiEKhOrefeUaKBx7orDDwACpi6RSHD0sgOhlTiUQiMBhiiERK82xqCmBgYBD9/UNwOl3IZKo7HVQiw2q1oru7G9lstsK40/MMBAJss9RsNkOr1bJVdjgcrlhN0xX2sWPHsGLFCoTDYchkMibp4fV6odfrEQqFmA59oVBAIBCAQqFALBZjVdZ072vjxo2zvoOl5PYZN/Icx10N4HsAxAB2EEL+ZTHj1boYc2Ua1LtgM7Nmpqfl+M53ViAe34MLLyzdBMViEUNDQ9i0CdiypRRf1+v1yOVyCIczFTE5GteMRqNMZCsWi0EikcBisUAmk2FsbAyEENjtdmQyGXi9XpbBEAqFkE6nUSgUWIenUCg0a965nBQeTzM8nlb4fO246aY/ob29FNopZQJIkEiIZ70PAJqbE+jvj6GvL4r2di/8fhO+8pVVyGZPZQ69+GIvaD57MKjBww9vRC73V7zrXVmWWqfX6zE9PY1wOAy9Xs9kDSQSCeuKo9VqIRaXxpVIJHA6nVXzfukqgIZ8TCYTa3jcyEySRqDRvC53MmamIS6G2zPfOzQ0xLJmaPiQhmLoJqRYLEYsxsHjUeOvfxVjamoAIpEW//7vngpuF4vNiMfry06IREVs3nwcl156DACYAX73u3+L6WkzVqw4BrM5WPP9KpWKNYwxmUyQyWRwOp2sNV+5kaThzkgkAo7jmI78oUOH0NraCoPBgNHRUUxPT0Or1bLWkbQhyMTEBJqamliVtt/vh1QqxeTkJEulbGlpYeNGIhGWfWQymRivq/VLWEpun1Ejz3GcGMCDAN4GYArAGxzHPUcIObLQscrV56h8aHnrr8VkGtTKmvnpT1djy5YRZtBisRjUajVEIhEymQyampqYIaOtwGiHGY7joNfrWQql3W6HRqNBPp/H8PAwa3wQCoXYpm0sFgPHcYhEIrNSHYtFDn6/BVNTLXC5WjA93YrpaTOKxVNxzUsvPYb+fpTFBwm6u3MIBES46CIptmwBmpsnYDAMQ6fLs/NKJBL42Mc2MQN/CpUeWS4nxbPPrsc73/kyeJ6HRCJh+fLhcBj5fB5KpRLd3d0ghMDlcrG8/FLuMc/0c6ptOtMQFt2gpu0D9Xp9QzNJFotG8hoAHnggiLvu0iObrZ6GuJhzn/le6rlnMpmTshMyTE1xGBszIpHowdCQHOPjJvj9laX+EglBOHwcfr+LdRozmSYA/A2USh7d3XGMjGiQyVTuWRWLIgwP23DzzS8gEMgjkUigUCigq2sYXV3Ds+bLcRw6OzvR3t4OkUiE6elpJkBGhczKN+8ph+h5+nw+yGQy1mbS5XIBAJOspivJfD7PNlap/EYikWB6TmKxGGq1GkqlEi6XC2azGU1NTYzXUqkUHo+Hhclq8RpYem6faU9+C4ARQsgJAOA47mkA7wGwoJuB/tKFQiEmauVyudgvOvXsTzfToFbWTCCgYuETpVIJsVjMZHCj0SgmJiZYlyRKpkQiwQqNmpqaEAwGoVKpWOYL1WvneZ6p3+XzeZYqOTPV8c9/3oZjx1bA7XaA52dv+pbD7+9ELjdU8dyPfjSCpiYRVq4siYPt3u3D9HQaEkkpJkrLyGs1AJmJUKj0A1va9D21JM7n8xV7A6Xcfgvi8ThbGtNNV6B60wir1cqkF+hKwO/3Y2BgAMPDww3LJGkAGsJroMTte+9VMgNPUZ6GuBhuz3wv7W4UjUaRz+vwta+9B8nk3CJw+TyHfftycDo5ZgRbWgj+7d9+CbM5AYVChg9+8MaK98jlWfT0jKC//yjTfKkGGttetWoVLBYLVq5cWeHQdXV1wefzzWrsXs4hep7UUy7NueREmc3misbaHMchm82yBiCEEFY1DYDxmoaEYrEYu69NJhNrYkO1Z+rxGlh6bp9pI98CYLLs7ykAW8sP4DjuUwA+BQBtbdWLG+gvXaFQqOigHgqF0NLSwuKRc2UaVNtwIoTAYllVNUPAZEpU9G8s/yIlEgmKxSLbaKG/zvl8nv3qq1QlL4w2txCLxSyuF4vFIJfLT6aESeF2OyCXa9DS4q6Yg8fjwPh4R9XrwnEETmcCK1fGsWJFGL29k0ilUjhy5Aj0ej3Tl2lpWc/eo1arK8TDTpE3gVCovlATANhspSwDGnaiwlB2u521WiuXQd6yZQsAsM06QkjNphG0upamYVLvRq/XL7fCpzl5Dcyf24FAf9XXqPMxn3Ofuaf08Y970NaWwf79GkxMmHDihA5f+9oou/5yuRwaDQHHVd/bEYuLaGmJorc3BYfDh66uGBQKHxQKI5qamk56mTpkMl7EYilIJCaYTAnkchz6+obQ338UnZ2jkEhqlzxLJBJWM0LDITKZrKpDp1QqEY1Ga25wll8jym16j1FFVBqGof1baT0H7fu6fv16Zmvm4rbJZMLq1avhdrvr8hpYem6faSM/ewcGqNguJ4Q8AuARANi8eXPVrXT6K13+BdLNE3ox5so0KI97cRyHyclJEELQ3t6Ov/u7KXzjG52zCo3e9749TH+d53n2Y0IrSOmXazQa2es0vh6Px6HT6cBxHFKpFPR6PTKZDFwuP0ZHNZicXAGXqxR6KUmWcli9+iDe//6fQ6lUskrT7u4QDh0qzampKYO+vgg6Ovy49FIZdLoRWK2nfvQSiRz8/gyLf1eDw+GAz+dDOBxmvVwzmQyuu24nnnrqihmFLaTiK5TLC/jnfy5WbPbF43G0trbCaDSyeG01GeS5Nggp0WdWCNKQ0jIrfJqT18D8uV0rDdFu5wHI6p47IcC3v53GP/6jHDx/ak/pG9/omDXenj0EF12kZ2G1fD4PpzOAsTEr2tpCWLEijZ6eBJqaJmGzheB0WljueDgcRjqdhst1qmsYXdlyHIdQKITPfGYHpNLYLPlpivJwhURS2ogViUSsypZ2NJvp0GWzWXg8HiaBUG2Dk14jjUYDv98PnucRi8UgEokQDAZhMpmY6mo8Hkd/fz9r0E3TKJ1OJ6tNmS+3y4+vtfG91Nw+00Z+CkBr2d9OAO4ax9YEvUgmk4mFReiSkV6MuTINyuNePp+voiL0Qx9SAxjFQw854fcrYDan8Q//4MX27RKcOCFlpfcikQhWq5VtotBeqFS5kYZuALBKubGxJHbvNmB83IapqRZ4PM0oFKpfdre7tDmk0Wig0+kQDAaxbZsXLS1/wMaNPOz2knqkxWIBIVlEIqd+9ADg+edNeOaZyxAOa2G1ZvDZz3px3XWxitieXq/H+vXr2XI4nU5DrVbjAx/Io6lp/8liq5KMwjvekcdLL8mrbgbS8Xbv3s2WmpTE1SQI5tognIvoy6zwqSG8BkrX7O/+bgrf/GZnRchGLs/jnnvyAGR1z/197wN+/vPq6YgzcfSoDNdco4fdbkc4HIbf78cXvvBXGI0StLSUfvxTqRTy+TxMJjNTJg0EAkwIjhACj8fDnJdS2KcUppNViSam00q2/0Ob19DMHprFolarWbIA7W8w0yNPJBIghDDdebFYXLHBWX6NeJ5nm69KpRJmsxmZTAbT09MwmUxYuXIlmpqakEwm0dLSUpHJUs7T+XB7PvnsS83tM23k3wDQy3FcJwAXgA8BuGmhg9CLRDdeyvuVllfh1bvg5bHJ8rgdjRd/8IMFXHHFbqhUKhw+fBiEEIyNiZnRpRuNRqOR/SpTb9vtdp+Mc3Kw2eTgeR7BYBA8z2NkpAvPPPOeuudXKvwIoK3NA0JKMX+e52GxWNDSIsP27Wqmd5PJZNDT0wO32418Pg+/3w8AeP55Ix59dAOTHfD5lLj3XieASVx66dQsYbRNmzZBpVLB6XTC7/dDLBbjmmsiuPzyV0AIqZAKLkF28lGJRi0150P0ZVT41BBeAyVuv/OdJQNQ7mR84QsZ9PSY8N3vAvv2Afv26bF9ux7f+17l+0/Kn9QAwfXXx9Dfn0FzsxcWixtTU9MsltzU1AS5XM54rVKp4PV6WU/TTCYDt9vNjGk+n0c8HmeN1muBVsuWGqyLIRJJWQMMes/odDqsWLGiKq/LHbpYLIbp6WnWYIOGPltaWtjewsxsu4GBAQwODsJisbDiLtqYnhCCNWvWzItH5wu3z6iRJ4TkOY67HcALKKWa/YgQcnih45RfpFwuh/b29gXnkZZ/YdRLAE71Ao1EIky1Ua/XIxwOIxgMgjbt5TgOVqsVspPuSjCYwr59HEZHzTh+/GJMTNgQDuvx5S//C+TyU5VGDsdsB89sjqG93YvWVg9stnE4nX5oteKTYSgZ25S96qqrAICRgy6Rh4eHWVioUCggHA7j8ce3zdKVyWYl+I//sKC//00Wf3e5XBgeHsbGjRvnjBXOB41cai4jI14XjeI1AOh0esjl/TCZYnj3u8M4flyL4WE1vvzl2eJeqip6X+vXl/ZmquWmW60ZfPOb06w3cLlhpuEXk8mErq6SrjrldiKRQCAQYCqQtO4hFotVPYeSMdewmHcsFgPP8yyTRS6XM6+a6sNceOGF7AdDrVbDZDKxHHe6qUnlBQqFAjQaDWvnR2szaBiFhpQEblfHGc+TJ4T8DsDvFjsOvUj0l7u8xHo+F6/8CzMajRUx+Ww2y4hFiUgr2UpFDmnIZGvx+98bsHs3h/377Rgb01Uty/Z4mtHRMcH+bmrisGXLYVitOTQ3T6C7O4TW1tJmk8vlAs/zIISD0WhEKpWq0L0oX6GU7ynwPI9AIIB8Pg+NRnNSp7r6pmkwqGaCTBqNhh2/d+9eOByOurHC+X4vyyiMctbQKF7/938DN96oAzB3M+gDB0oNWMp1Wm68EYjH0/jsZ0/VeQClcM9nPzs9i9sajQaJRII111AqlSyhIBKJMK89Ho/XFbWj9RBGoxFGoxHj4+Os7L+1tRUulwsikYhVzaZSKSYh3NfXV9ElrJzbKpUKhUIB8XichW7oxigtpqN9WQuFAuuTKnC7Ns6piteFFg1UW8p5vV7WFCGdTrPKNbr7TpeyCoUCLS0t8Hq9+OIX34mpqblvQrE4j2jUALHYxcgkFotx880vQy6XI5VKnfRCSjcPrYBNJpMsD1gsFkOpVLKOOBTV9hSUSiUkEgnMZjPM5hQCgdnLyKamJMRiMeukBJRajdGbuZpS3kI9lXPFA1+OWLeu+vNSaRFdXWlccIEUW7bIsH49sHbtKQNfWTwlwY03pvDiizJ4vTI0NaXw3ve+Aat1GPv3V3KbxsbVajW8Xi9yuRx8Ph/rP1CvIpn2I6WZZXK5HMlkkn33xWIR4XAYwOK4TflEW95RPSbK1WKxCLvdzlpaUr0ZQOB2NZwTRp4a65GREbYkpKJBYrEYIyMj2LRp06z3zPxBOH78OADAYrEgm82erFxTYny8A/v3K3D8eBMuuyyEa68tacPTYiSj0VfVyDc1BeB0TqG1dRpdXX709WWRz6eQz6uYLoZIJGJGlnoi1Juino7BYGCd5Gm8cua50LlTEtNjTsn6DuLBB9dXZMeIxXlksxJ8+MN/C5MpgU984jiuvjrEVgC0scG57qmcyzCbo3A4lLBYoujuTmDlSh5tbUFYrWHI5aVU1Zncnlmh7fHI8OyzYvyf/zOEa6+NsQprkUgKnU6HcDjMKq7p957NZpHL5XDs2LFZ+eflUKlULL5OC4hoXns+n4dcLkckEjkj3KbP0Y5m5QVDr7/ejYceciIQUAncngPL3sjPTH3MZrNwuVywWCxQq0sSv6Ojo7DZbEyfgqoezqwiSyQyGBvTYGREj337LDh+vAlTU/qKeKZcnsOaNQcQDoeZR2C1jkGttsPpnEJLixstLS50dPjR3KxkaVTRKAez2YlEIsEa8lKBI5lMVnGjAKUNHIPBgGKxCJvNxjq2m0wmiMXiWeXadIVBZQ7Ksw1KPVWnAABPPDGAQEAFtTqLbFaKRKK05xAKafG9761GobAfl13mZtfvfPBUzlVEo1EMDw/h+ecVmJiYYJoo5dymIUZCCFuN3n23claFdjYrxg9/2InLLvszSxKgstNKpZIlCHAch3A4XNdj12q10Ov10Ol0UCqVrHtRIBBg8sMSiQSxWAxms5mFGRfL7WQyySQylEolS26gOjLUUTp2bDP+/d+7WTaSwO36WPZGfmRkBKFQiOW0Us+VNrqlXkU1pTz6BR844MDTT3fh6NHuWQ0OZn+eCRMTExXP/c3f7MTFF/8ZcnmpWEOj0cBm60KhUIBEImEZLqUG1N0YHR092Uw4xarq8vk806ambfjsdjsCgQD6+voqWn3RNC3g1FKWdqohhLCxaUHI8PAwOI7DFVdI8M53lsTCPvGJK5FMzpZqePzxftx4I8/6TgpYOszF7Vwuh1wuB7/fj46ODsbr6ekLqo7n8ymYDEB5hkwymWROQTVwHMd695pMJrZ5CgDBYJClNPb392N0dJQ5K1T3hq6oF8PtEydOIJlMQqE41c6S9iOmKYtOpxOFQgFf+lI3ZlYIC9yujWVt5KPRKCttpgUS09PTLO3qt7/V47HH+hAMqmE0JvHudyfgdGZx4YUjCAaDiMViaGtrQyqVw4ED1X/ROa4Iq9V30kOfQkuLq+J1rVbLfkxoji8tSSaEoK2tDevXr0cul8Pk5CSy2Sx0Oh2y2Swrgsrn8ygUCuB5nq0unE5nRaVcrTSt8kKwlpYWHDt2DDKZDGKxGHq9HpFIBFKpFEajEa2trchkMhgYGKjZzCEYVDHJVcHLWTrMxW2aLSKTyeD3+2Gz2ViOusEQRzg8O3xoNpf2ekKhEOuZWgvUKHMcB7VaDYVCgVwuh1QqhUwmU8Ep6vVrtVrY7Xb4/X74fD6o1eqGcZuGZajMAG2CrVAosH79elb8WEqhrq4XL3C7Opa1kXe73czA0t18g8GAWCyLP/xhE37zm/UoFEreajiswWOPaSASFfGjH/0VOp0OsVgMPp8PdnsKtOrcaIzB4ZiCw1Ey6M3NnoqUR6AU2unp6WEbReUFWFQuld4EnZ2lbjaUuPF4nGXA2Gw21vyYevLZbBZdXV2skGtgYIA1Gam2QVSe+km7RRkMBpZtQGOm1Aukc6jV4MRu5zEwMNDIr0nAaaAWt2eG+Wj18/Hjx1m48oYbduOJJy5lq1K9PopVqw7j8sv34Pjx2WqlFBzHobm5Gb29vSxOr1KpkM1mWfu7XC4HjUaDtWvXsqwbqrlEiwLPBLcBVChjUj2ZQqFQkZcucHvhWNZGvlTybcHkpBsvvdSM4WEjjhzZgBMndMy4z0SxKMLYmB4rVhSh0+mQSCQQibjw4Q//BHa7F1rtbNEfmpKl1+uZIaeSqzQcRHPUqTGlCozlMBgMkEgk2Lx5M/7/7Z1dbJvndcf/R/ymSb4iTYr6dmTLlqUshRMbnoPNDbDFaD6GBR1QtLsIBqzBbrJuA3axFb0Z2ssBA9ptwJZiQ3vRLii8rSsQtFkDDK0xLNvcRAnqqQw0y/IkyxQpSpQofpPPLuhz/JIiqW/xJf38bmyJkt5j+8/j5znPef4HgFiLhsNhhEIhVKtVGQ7icDhE7DabDYuLi/ImNHcLNfbq2mw25HI5RKNR2e6Wy2Xp92djo69+tYwvfclWV7t1uytyi1LTWVjbnATtdjv6+/ulC8rtdkvtPBqNyuFmuVzGiy+u4vTpf8dHH5Vw5sxdDA+vtHwO2wawZtlCgK1yq9UqQqGQWHLY7XYEAgFJ8MDjBG1OoLtpOxQKSSmn1RQks7ZdLpdcVhoYGBBPGPOUJ63tg2HpJM+HT2NjI/jmNy8ind79H9DpLCCbjePu3aU6V8Tz5/+37uu4JzcYDMrqnH0ubDabiJ63nUopGIYBj8eD0dFRxOPxHc82b0W59cu8VS0UCpicnMTw8DAePHiAjz/+WCYlnT9/XlY6Zhp7dSORiAweaXxjmGOo2Q+09ijXdBbWNs8a5cXDzMwMNjY2ZLZAPp+XGvjm5iay2Zp3jNcbw/PPN//ZnET5MhDr2jAM5HI5fPLJJ3A4HGI3HA6HZdcaCAR2jM9rvOW5m7bn5+dx584dsQRn36bGMopZ26xlnhpmXsw0xqG1vT8sneTNdgaXLhXxk588TvI2m0KlQgAUgsF1PP30HczMzMmqptlEPJfLhdOnT0utkS0/5+bm6q5cFwqFOlGvr6/LxKWxsTF5QwA1cTfbira6LRcKheTPxM9MJBLixgfs9JFu7BLgltLGN0ahUKiL4Y03vHjjDf6u5rYEms5g1vbo6Kjow+y/Yrfbsbi4iIWFBSQSibZWAjwKLxgMYnBwEMViEXfv3pVSDHfV8K7V5/PBZrPJ2cDQ0JC0FgOtdW2OHWiu7XaW4I21crO2WdeNi5lmDo9a23vH0kme/6efn5/H1asxjIz4cO1aH155JYIf/WgV77yzgPPnYwiF1lv+DB5qMTAwICPziAgXL9bsXWdnZ6UmarPZxPN5e3tbrlP39/dL/XBhYQEulwtDQ0PSttmsD7fVbTnzxY9CoSCufKlUSma47uYj3eqN8ST3AncbfEA4NzeHzc1NBAIBTE9Pw+VyYXNzE7Ozs3KruRlcRuTDUN4BlkolTE1NAQAePnwog26cTidWV1dhs9lQrVaRTCbhdDpx5swZZLNZxONx5PN5PPXUU211zbG303Y7S/Dd/k6aLWa0tg+HpZM8U6lU8NprJdy79ws8fPgQ3/1uFtVqFb+8w8EbMpGJr0eXy2UUi0VxW2TLAqAmKr6anUql0NfXh0AggGq1Km88p9MpNqXlchmFQkF84DOZDC5dutRSeM36dM0DAthDxzxzkm1cGw3F9vMMjfXhBBaNRuHxeBCLxfDBBx/sKNeZYaMt3oFyay4benFnClDTBfugc2nF7/fLAobtCKrVqrQolkolLC0tYXl5Gc8991zbQ8x22m5nCb6fWaZa20eD5ZP87Ows5ubm2m5X+/r6EA6H4fV6ZcvKdU721CgWizII++zZs7J15Jtx2WwWqVRKHO+q1SrOnDkDIkKpVJKVvdkTe319velt23aYOwrYaY/bzwqFglwLdzgclphlqjkelpeXcf/+fSwvL8vA82a4XC5Eo1EEAgEx5FJKIZlMIpVKgYjEjdTn82FkZES07Xa78cwzz8gBLnespFIp6Y6Jx+Po6+uTOx2RSET8X/hS1F7ZzRLcXKrU2j45djpsWYy1tTXE4/GmCZ4dIwcGBmC32zEyMiIzVHmVY7fbpb7Oh0y8mgHqDf3HxsYwMzMDr9crt+x4XBpffOJtKHuAcHfEXhkeHkY+nxc/+kgkIj4gnNiDwaA497lcrgM9R2Nt2GGxWYJno69AIIBIJAK/349QKISFhQWZKcx+NB6PRz72eDzo7++v0zYbhk1OTuLChQtyS5q1ncvlpIuMtW2+IbsfWNt2ux3Dw8Ny8SkSiWBqakrai7W2TxbLJ3nuQwdqq1vuGODVAN8AdTgcWFtbw/j4uIzXq1QqCIfDCAQCCIVCsNvtyOVyWFxcxPr6OtLpdF3S5Rt2wWAQ4+PjcktwZGREOhz8/nq3R/Ntvr3A9Uy2/jUMAy+88AKuX7+O6elpcd4z43Q65Y2r6Q1OnTqFwcFB+djj8UgC5JJMpVKB0+mU0kwgEJALSw6HA+FwGP39/TLQJh6P4969e6LJvWg7Go3Kz2dts//LfjVn1jY7vN64cQOXL1+GYRgyKMSM1vbxY/lyzdmzZzE+Po5qtQq32y3Drrk1DIC0g/ENOu4nZ/vezc1N5PN55PP5ugMr3io2HiJxnd1cPwyFQtje3hbjpXK5jFwu13J2Zzva1RotNstUc0zwGEb2cmfrAV5VcxdMsVhEuVzGysqKLGii0ajYB/CMBZ6XmsvlkMlkkE6nmx6QNmo7mUxibW1N3je8c2X/l/2itW09LJ/kDcPAjRs38P7772NjY0Pq17zKYWFms1n4/X643W7k83lsbGwgHA7L9nNzcxMOh0M6Zubn51GtVrG6uiqr6GbPNnexzM7OikWx3W5HKBTaYZu6n4OlZlhslqnmmDCM2hhGn8+HWCyGUqkEr9crSd1ms8HpdCKbzUoCP3XqlBjn8ee4zJLNZuX7l5eXkUwmMTMzI5OSmj2fdTkxMYEPP/wQW1tb8Pl8iEQiTf1ftLa7E2plWtQJrly5om7fvt30tXQ6LZcsstksCoUCDMOAzWbDysoKKpWKrD64IyaTyYilcC6XQzgcFotV7rDJZrMYGxtDOByuc/rbqz99Y8sXHyyZRbzfg6XDvpk0rSGinymlrpz0c3fT9q1bt7CysiIzB7xeL7LZrHixc319eHgYmUwGa2trcDgcomulFBwOB9LpNIgIxWIRExMT2NraQjAYRDgcbqsjre3upp2uLb+SZwzDwOXLlzE5OYlYLIbt7W3E43Gk02kopRAKhepu6jkcDhQKBVy4cAFOpxP37t3Dw4cPZRtsrnnyVtjs9NdMvLu1dJl74AHIr80ugez2Z9XCf3IwDAPXr19HLBaTHva1tTUZ0uH1esXIjC80hUIhXLx4UXTNbb52ux1EhGq1iqWlJQSDQfGeadfJorXdu3RNkmfMdUa/34/19XWZJM+r81KphPv37yMUCokY2aqXh3izcx7X2Nm+N5VKYXt7G+l0GlevXt2XIM3Dwpm9XG7SaMy6ttvtOHfuHLLZLBKJhJwjAZC5vkNDQzJ3eHl5WYZr22w20XW1WoXH45E7HqlUCrdu3cK5c+f2vYLW2u5eLN9d0wzDMDA9PY0rV66IRQHbsyYSCdy86cSbb76Kl1/+DD796XHcvFmrZ7Jda6FQkN56NlQCar3L7Hq3vb2NWCyGdDq957j4YMmMPljS7BWzrrnTKhKJYGtrS8ZWJpNJJJNJbG7WJkAREaLRqOhOKSW6Ng+s5751ALKq19p+MujKJG+Ga5XBYBAbGxt4770BfPvbv4qNDQMAYXXVg699bRQ3b7oQDoflYkkgEJBtLXc0cO9xpVKRQ9z99PA2tqyxl4weYKA5CGxiRkQyx4BvRHMCX1pawqlTp3D69GlMTk7C7/ejUqlIjZ6/3ul0ShPCQfrTtba7l65P8iy+TCaDgYEBfP/7V1Eq1U9kLxTs+MY3oujr68O1a9cwNjaGUqmEcrmMyclJDA4OolQqyVaXb+3tt4e3sQfe4XDo23yaA8Ntlnzr1e12IxAIwOfzYWNjQ+rvmUwGzz77LAzDkL754eFhOBwOuWzHJl+hUAjA/vvTtba7l66ryTfC4rt16xYAIJlsbjeaSLhFlH6/H16vV074/X4/5ubmkMlkxMyMhynsdzuqD5Y0R4VhGHJwms/nUalUMDIyAqUU1tdrYx7N05i4/GLW9dbWloynHB0dFafTg5RatLa7k65P8tySxdvTSCSHRGJnoh8cLNUNDzb7Zzx48ECm2HCLWKNt715i0G1hmqMknU7LJT+2NuBBNUNDQxgdHUWhUJDWyWa6npqakv70Vra9u8Wgtd3ddHW5hoVdKpWkbPP5z38Ep7PenvXx1Jj6VjCzf8bW1taBtqPmGHw+34EOtTSaRlhXfr9fBmhw11c2m61b4fMQmla+MActtWht9waHWskT0ecA/BmAaQBXlVK3Ta99GcAXAVQA/IFS6t3DPKsZ5mn3brcbkUgEr76aRl/fz/D2259CIuHeMTWmXSvYQbajR9U/rLEWVtJ2X1+fHJ7yTVTzCEnDMOosrBlzi6PW9pPLYcs1PwfwWwD+1vxJIpoB8AUATwMYBvAeEV1QSlUO+Tyhcdo99wGPjIzg9der+PrXPY++sn5qzFH7Z+j+4Z7FUtouFosYGxtDtVptam19HL4wWtu9waHKNUqpOaVUrMlLrwF4WylVUEotAJgHcPUwz2qkcdq9w+GQ6TfthH3UrWC6f7g36TZtH0eLo9Z2b3BcNfkRAP9n+njp0ed2QES/R0S3ieg2dwHsBZ52XywWUSqVZNh2JpNpK+yjbgXT/cNPHJbU9nG0OGpt9wa7lmuI6D0Ag01e+opS6l9afVuTzzV1QlNKvQXgLaBm4rRbPEyzafc2mw0TExO7CvsoW8FazbvUNUvr02vaPuoWR63t3mDXJK+UevEAP3cJwJjp41EARzr+pdW0+0br35NA9w93J1rbu6O13f0cV7nmBwC+QEQuIpoAcB7Afx3lA/QNPE2H0NrWdBWHbaH8LIC/BBAB8A4RzSqlPqOUukNE3wPwPwDKAN48yu4DRq8yNMeF1ramV7DU0BAiSgBYbPFyGEDyBMNph1VisUocQPfEckYpFTnJYICu0bZV4gB0LM04kK4tleTbQUS3OzHRpxlWicUqcQA6lsNglXitEgegYznKOLra1kCj0Wg07dFJXqPRaHqYbkryb3U6ABNWicUqcQA6lsNglXitEgegY2nGgeLompq8RqPRaPZPN63kNRqNRrNPdJLXaDSaHqarkjwR/TkR/YKIPiaifyai/g7G8jkiukNEVSI68fYqInqJiGJENE9Ef3rSzzfF8fdEtEpEP+9UDI/iGCOifyOiuUf/Ln/YyXj2i1W0rXVdF0tPaLurkjyAHwP4JaXUpwB8AuDLHYyF/cZ/etIPJiIbgL8G8DKAGQC//cjnvBN8C8BLHXq2mTKAP1ZKTQO4BuDNDv6dHASraFvr+jHfQg9ou6uSvFLqX5VSPNvvfdTMoToVSyu/8ZPgKoB5pdRdpVQRwNuo+ZyfOEqpnwJIdeLZDXGsKKU+ePT7LQBzaGEBbEWsom2t68f0ira7Ksk38LsAftjpIDrEnj3Nn0SI6CkAzwL4zw6HclCeVG1rXe/CQbR92PF/R85ePL6J6CuobWG+0+lYOsSePc2fNIjIB+AfAfyRUmqz0/GYsYq2ta67k4Nq23JJfjePbyL6HQC/AeDX1TE3+R/Qb/wkOHZP826EiByovQm+o5T6p07H04hVtK113X0cRttdVa4hopcA/AmA31RKZTsdTwf5bwDniWiCiJyoDZb+QYdj6ihERAD+DsCcUuovOh3PftHaBqB13ZTDarurkjyAvwLgB/BjIpolor/pVCBE9FkiWgLwPGp+4++e1LMfHdD9PoB3UTuE+Z5S6s5JPd8MEf0DgP8AMEVES0T0xU7EAeBXALwO4NceaWOWiF7pUCwHwRLa1rp+TK9oW9saaDQaTQ/TbSt5jUaj0ewDneQ1Go2mh9FJXqPRaHoYneQ1Go2mh9FJXqPRaHoYneQ1Go2mh9FJXqPRaHqY/wckj1ywVdBoLQAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(ncols=2, nrows=2)\n",
"ax = np.ravel(ax)\n",
"\n",
"n = 10\n",
"np.random.seed(1)\n",
"for e in range(4):\n",
" idx = np.random.choice(range(len(x)), size=n, replace=False, p=None)\n",
" ax[e].scatter(x, y, color=\"gray\", alpha=0.3)\n",
" ax[e].plot(x, intercept + slope * x, color=\"gray\", linewidth=3)\n",
" _x = x[idx]\n",
" _y = y[idx]\n",
" ax[e].scatter(_x, _y, color=\"blue\")\n",
" (_slope, _intercept, _, stderr, _) = linregress(x=_x, y=_y)\n",
" ax[e].plot(\n",
" x, _intercept + _slope * x, color=\"blue\", linewidth=3, linestyle=\"dashed\"\n",
" )\n",
" ax[e].text(s=f\"$s_e={np.round(stderr,4)}$\", x=-2, y=10, size=18)"
]
},
{
"cell_type": "markdown",
"id": "5f351e25-2074-40cb-97a4-42aa38482aa6",
"metadata": {},
"source": [
"Wie oben dargestellt, variiert die Regressionsgerade der Stichprobe von einer Stichprobe zur anderen und ist daher eine Zufallsvariable. Ihre Verteilung wird als **Stichprobenverteilung der Steigung der Regressionsgeraden** bezeichnet."
]
},
{
"cell_type": "markdown",
"id": "6187366b-fe90-45bf-97c3-7484b6ae99dc",
"metadata": {},
"source": [
"## Inferenz über die Steigung - Der $t$-Test des Regressionskoeffizienten"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "eee97c57-692e-449a-ae1b-b10f1dded3ae",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from random import sample\n",
"from scipy.stats import t, linregress"
]
},
{
"cell_type": "markdown",
"id": "1dee1d07-cadc-45c9-88bc-c0fa8f1fb795",
"metadata": {},
"source": [
"Der **$t$-Test des Regressionskoeffizienten** wird angewendet, um zu prüfen, ob die Steigung $\\beta_1$ der Regressionslinie der Grundgesamtheit gleich $0$ ist. Auf der Grundlage dieses Tests können wir entscheiden, ob $x$ ein nützlicher (linearer) Vorhersagewert für $y$ ist.\n",
"\n",
"Die Teststatistik folgt einer $t$-Verteilung mit $df=n-2$ und kann geschrieben werden als"
]
},
{
"cell_type": "markdown",
"id": "8b3f9bc6-caef-4b6d-86cb-43fe6183dd31",
"metadata": {},
"source": [
"$$t =\\frac{\\beta_1}{s_b}= \\frac{\\beta_1}{s_e/\\sqrt{\\sum(x- \\bar x)^2}}\\text{,}$$"
]
},
{
"cell_type": "markdown",
"id": "f5208195-cd42-476a-8864-c6549ea50a4a",
"metadata": {},
"source": [
"wobei $\\beta_1$ dem Stichprobenregressionskoeffizienten und $s_e$ dem **Reststandardfehler** entspricht $(s_e=\\sqrt{\\frac{SSE}{n-2}}$ und $SSE = \\sum_{i=1}^n e_i^2)$"
]
},
{
"cell_type": "markdown",
"id": "0228dbad-ba8c-4180-9894-46d47380a633",
"metadata": {},
"source": [
"### Intervall-Schätzung von $\\beta_1$"
]
},
{
"cell_type": "markdown",
"id": "1e591671-6031-49ff-ab7f-834507e80c63",
"metadata": {},
"source": [
"Das $100(1-\\alpha)\\%$-Konfidenzintervall für $\\beta_1$ ist gegeben durch"
]
},
{
"cell_type": "markdown",
"id": "70028822-b27c-4607-bde5-05b270413834",
"metadata": {},
"source": [
"$$\\beta_1 \\pm t_{\\alpha/2} \\times \\frac{s_e}{\\sqrt{\\sum(x- \\bar x)^2}}\\text{,}$$"
]
},
{
"cell_type": "markdown",
"id": "462c5722-6387-4b77-b00c-bf8f7d260c09",
"metadata": {},
"source": [
"wobei $s_e$ dem **Reststandardfehler** (auch als **Standardfehler der Schätzung** bezeichnet) entspricht.\n",
"\n",
"Der Wert von $t$ ergibt sich aus der $t$-Verteilung für das gegebene Konfidenzniveau und $n-2$ Freiheitsgrade."
]
},
{
"cell_type": "markdown",
"id": "a42fba0a-69f1-4b50-93c7-48616788b251",
"metadata": {},
"source": [
"### Der $t$-Test des Regressionskoeffizienten: Ein Beispiel"
]
},
{
"cell_type": "markdown",
"id": "fda00333-06e8-485d-92c7-636aefeb1b01",
"metadata": {},
"source": [
"Um praktische Erfahrungen zu sammeln, wenden wir den **Regressions-$t$-Test** in einer Übung an. Dazu laden wir den `students` Datensatz. Sie können die Datei `students.csv` hier herunterladen. Importieren Sie den Datensatz und geben Sie ihm einen passenden Namen."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6ee1e345-05fa-406d-9488-9a4f28080aaf",
"metadata": {},
"outputs": [],
"source": [
"# Lese Datei students.csv als Dataframe ein; Indexspalte wird übersprungen\n",
"students = pd.read_csv(\"../../data/students.csv\", index_col=0)"
]
},
{
"cell_type": "markdown",
"id": "45fcf707-c3f2-4b0f-a759-ff0dd5374ccc",
"metadata": {},
"source": [
"Der `students` Datensatz besteht aus 8239 Zeilen, von denen jede einen bestimmten Studenten repräsentiert, und 16 Spalten, von denen jede einer Variable/einem Merkmal entspricht, das sich auf diesen bestimmten Studenten bezieht. Diese selbsterklärenden Variablen sind: stud_id, name, gender, age, height, weight, religion, nc_score, semester, major, minor, score1, score2, online_tutorial, graduated, salary."
]
},
{
"cell_type": "markdown",
"id": "1fd4a844-9299-4f90-86ba-2c1065eb9e1c",
"metadata": {},
"source": [
"Um den $t$-Test des Regressionskoeffizienten zu veranschaulichen, untersuchen wir die Beziehung zwischen zwei Variablen, der Körpergröße der Studenten als Vorhersagevariable und dem Gewicht der Studenten als Antwortvariable. **Die Frage ist, ob die Vorhersagevariable `height` nützlich ist, um Vorhersagen über das Gewicht der Studierenden zu treffen.**"
]
},
{
"cell_type": "markdown",
"id": "3a9bf2e9-5ca3-4e9a-ad03-7462d1851116",
"metadata": {},
"source": [
"### Vorbereitung der Daten"
]
},
{
"cell_type": "markdown",
"id": "9f33672e-ea36-4db0-8176-91ff85a5ad9e",
"metadata": {},
"source": [
"Zur Datenaufbereitung ziehen wir eine Zufallsstichprobe von $12$ Studenten aus dem Datensatz und erstellen einen `dataframe` mit den zwei Variablen von Interesse (`height` und `weight`). Außerdem stellen wir die Daten in Form eines Streudiagramms dar, um die zugrunde liegende lineare Beziehung zwischen den beiden Variablen zu visualisieren."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "65173b81-b5a5-421c-a6d1-2634feb7ef9b",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
height
\n",
"
weight
\n",
"
\n",
" \n",
" \n",
"
\n",
"
3594
\n",
"
169
\n",
"
71.7
\n",
"
\n",
"
\n",
"
4152
\n",
"
181
\n",
"
81.0
\n",
"
\n",
"
\n",
"
7136
\n",
"
148
\n",
"
57.8
\n",
"
\n",
"
\n",
"
5100
\n",
"
173
\n",
"
72.1
\n",
"
\n",
"
\n",
"
339
\n",
"
168
\n",
"
70.7
\n",
"
\n",
"
\n",
"
4433
\n",
"
159
\n",
"
66.1
\n",
"
\n",
"
\n",
"
2767
\n",
"
169
\n",
"
69.5
\n",
"
\n",
"
\n",
"
2727
\n",
"
159
\n",
"
62.5
\n",
"
\n",
"
\n",
"
7099
\n",
"
173
\n",
"
70.7
\n",
"
\n",
"
\n",
"
2388
\n",
"
164
\n",
"
68.5
\n",
"
\n",
"
\n",
"
2124
\n",
"
171
\n",
"
70.8
\n",
"
\n",
"
\n",
"
8170
\n",
"
160
\n",
"
62.9
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" height weight\n",
"3594 169 71.7\n",
"4152 181 81.0\n",
"7136 148 57.8\n",
"5100 173 72.1\n",
"339 168 70.7\n",
"4433 159 66.1\n",
"2767 169 69.5\n",
"2727 159 62.5\n",
"7099 173 70.7\n",
"2388 164 68.5\n",
"2124 171 70.8\n",
"8170 160 62.9"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Nehme Stichprobe\n",
"n = 12\n",
"data = students[[\"height\", \"weight\"]].sample(n, random_state=2)\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "17638aa6-51ff-4265-be4b-f5b6b6ab69cb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Gewicht')"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWF0lEQVR4nO3df5AkZ33f8ff39k46CUfmJJ2IDMY6EcDrncJCt1HAWRSfhE1JlVhSAi4tsUvGUxYhYlMmsbFgUpgkdYnDj6LsLZdiwUHkHzdGqLAQZcdAtBPLkwLhPUmIwwuRERL6cUgLCpBATrc+ffPH9B6zd7t7s3fbM7Pb71dV124/0z3zvUeqz/Y83f10ZCaSpOrYMugCJEn9ZfBLUsUY/JJUMQa/JFWMwS9JFbN10AX04vzzz8+LLrpo0GVI0oZy4MCBb2bmzuPbN0TwX3TRRczOzg66DEnaUCLi0eXaHeqRpIox+CWpYgx+SaoYg1+SKsbgl6SKMfglaQg1m01qtRojIyPUajWazea6vfeGuJxTkqqk2WzSaDTYt28fExMTtNtt6vU6AJOTk6f9/rERpmUeHx9Pr+OXVBW1Wo3p6Wn27NlzrK3VajE1NcXBgwd7fp+IOJCZ4ye0G/ySNFxGRkY4fPgw27ZtO9a2sLDA9u3bOXr0aM/vs1LwO8YvSUNmdHSUdru9pK3dbjM6Orou72/wS9KQaTQa1Ot1Wq0WCwsLtFot6vU6jUZjXd7fk7uSNGQWT+BOTU0xNzfH6Ogoe/fuXZcTu+AYvyRtWo7xS5KAkoM/It4WEV+KiIMR0YyI7RFxbkR8JiIeKn7uKLMGSdJSpQV/RLwQ+FfAeGbWgBHgeuBm4O7MfClwd7EuSeqTsod6tgJnRcRW4GzgSeAa4Lbi9duAa0uuQZLUpbTgz8wngPcBXwcOAd/JzE8DL8jMQ8U2h4ALlts/Im6MiNmImJ2fny+rTEmqnDKHenbQObrfBfwI8LyI+IVe98/MWzNzPDPHd+484ZGRkqRTVOZQz2uBr2XmfGYuAB8Hfgp4KiIuBCh+Pl1iDZKk45QZ/F8HXhURZ0dEAFcCc8BdwA3FNjcAnyixBknScUq7czcz742IO4D7gL8F7gduBX4IuD0i6nT+OLyhrBokSScqdcqGzPxN4DePa36WztG/JGkAvHNXkirG4JekijH4JaliDH5JqhiDX5IqxuCXpIox+CWpYgx+SaoYg1+SKsbgl6SKMfglqWIMfkmqGINfkirG4JekijH4JaliDH5JqhiDX5IqxuCXpIox+CWpYgx+SaoYg1+SKsbgl6SKMfglqWIMfkmqGINfkirG4JekijH4JaliDH5JqhiDX5IqxuCXpIox+CWpYgx+SaoYg1+SKmZrWW8cES8HPtrVdDHwLuD5wK8A80X7OzPzz8qqQ5K0VGnBn5lfAS4BiIgR4AngT4A3AR/IzPeV9dmSpJX1a6jnSuCrmflonz5PkrSCfgX/9UCza/2tEfFgRHw4InYst0NE3BgRsxExOz8/v9wmkqRTUHrwR8QZwM8BHyuabgFeQmcY6BDw/uX2y8xbM3M8M8d37txZdpmSVBn9OOK/CrgvM58CyMynMvNoZj4HfBC4rA81SJIK/Qj+SbqGeSLiwq7XrgMO9qEGSVKhtKt6ACLibOBngDd3Nb8nIi4BEnjkuNckSSUrNfgz8/vAece1/WKZnylJWp137kpSxRj8klQxBr8kVYzBL0kVY/BLUsUY/JJUMQa/JFWMwS9JFWPwS1LFGPySVDEGvyRVjMEvSRVj8EtSxRj8klQxBr8kVYzBL0kVY/BL6qtms0mtVmNkZIRarUaz2Tz5TlpXpT6BS5K6NZtNGo0G+/btY2Jigna7Tb1eB2BycnLA1VVHZOagazip8fHxnJ2dHXQZkk5TrVZjenqaPXv2HGtrtVpMTU1x8ODBAVa2OUXEgcwcP77doR5pExu2YZW5uTkmJiaWtE1MTDA3NzegiqrJ4Jc2qcVhlenpaQ4fPsz09DSNRmOg4T86Okq73V7S1m63GR0dHVBFFZWZQ7/s3r07Ja3N2NhYzszMLGmbmZnJsbGxAVWUuX///ty1a1fOzMzkkSNHcmZmJnft2pX79+8fWE2bGTCby2SqY/zSJjUyMsLhw4fZtm3bsbaFhQW2b9/O0aNHB1ZXs9lk7969zM3NMTo6SqPR8MRuSVYa4/eqHmmTWhxW6T6ROgzDKpOTkwb9gPU0xh8Rb+ilTdLwaDQa1Ot1Wq0WCwsLtFot6vU6jUZj0KVpwHo94n8H8LEe2iQNicWj6qmpqWPDKnv37vVoW6sHf0RcBVwNvDAifqfrpXOAvy2zMEmnz2EVLedkQz1PArPAYeBA13IX8LpyS5M0LIbtfgCdnlWDPzO/kJm3AX8vM2/rWj6emf+7TzVKWka/wni97wfwj8gQWO4az+MX4B8CnwH+F/Aw8DXg4V72XY/F6/ilpfp5Pfx63g/gdfz9xQrX8fca/F8GrgIuAM5bXHrZdz0Wg19aqp83Z23ZsiWPHDmypO3IkSO5ZcuWNb/XMN5UtpmtFPy9Ttnwncz8b5n5dGZ+a3FZ168eknrWzzlv1nOaBefqGQ6rBn9EXBoRlwKtiHhvRLx6sa1olzQA/ZzzZj3vB3CuniGx3NeAxQVorbLMrLbvei4O9UhL9XusfP/+/Tk2NpZbtmzJsbGxU/4cx/j7i9MZ4z+VBXg58EDX8l3gV4Fz6Zwofqj4ueNk72XwSydarzDut41a90a0UvD3NElbRPxH4D2Z+e1ifQfwbzLz3/byrSIiRoAngH8A3AQ8k5m/FRE3F8H/G6vt7yRtkrR2p/sglqsWQx8gO9fwX72Gz78S+GpmPgpcA9xWtN8GXLuG95EknaZeg38kIs5cXImIs4AzV9n+eNcDi3dpvCAzDwEUPy9YboeIuDEiZiNidn5+fg0fJUlaTa/B/4fA3RFRj4hfpjM2f9tJ9gEgIs4Afo41TuiWmbdm5nhmju/cuXMtu0oqeJesltPT7JyZ+Z6I+CKdIZsA/kNmfqrHz7gKuC8znyrWn4qICzPzUERcCDy95qolndTiVAv79u1jYmKCdrtNvV4HcOK2iiv9CVwR8cfApzLzI8X6e4FvdZ3cPTcz377ae3hyV1q7Wq3G9PT0kgextFotpqamOHjw4AArU7+sdHJ31eCPiHZmTkTE/wG6NwwgM/Ock3zo2cBjwMWZ+Z2i7TzgduDFwNeBN2TmM6u9j8Evrd2wPnpR/XNKj17MzIni5985lQ/NzO/Tmdenu+1bdIaMJJVoWB+9qMHr9dGL/z4iXhsRzyu7IEnrw0cvaiW9PnrxEeCNwHQx7POXwD2Z+YmyCpN0enz0olayppO7EfF3gZ8Hfo3OHbenNAS0Vo7xS9LandIYf9fOHwJ+AniKztH+64H71rVCSVJf9HoD13nACPBt4Bngm5npw9ZVGd4Ipc2k1xu4rgOIiFE6D1lvRcRIZr6ozOKkYeCNUNpsep2d8x8DrwEuB3YAnwX+MjM/XG55HY7xa5C8EUob1SndwNW18+8C99AJ+ydLqG9VBr8GyRuhtFGd1rTMmXkT8Dk6J3iJiLMioi9X9EiD5uMCtdn0egPXrwB3AL9XNL0IuLOkmqSh4o1Q2mx6vYHrJuAy4F6AzHwoIpadR1/abLwRSptNr8H/bGYeiQgAImIrSydtkza1yclJg16bRq/X8f9FRLwTOCsifobOQ1U+WV5ZkqSy9Br8NwPzwBeBG4E/zUwHOCVpA1o1+CPimoi4KTOfy8wPAj8GjAPvjIjX96VCSdK6OtkR/9uBu7rWzwB2Az8NvKWkmiRJJTrZyd0zMvOxrvV28bSsZ5ybX5I2ppMd8e/oXsnMt3at7lz/ciRJZTtZ8N9b3Ly1RES8Gfh8OSVJksp0sqGetwF3RsQb+cH8+7uBM4FrS6xLklSSkz1s/WngpyLiCmCsaP7TzJwpvTJJUil6nY9/BjDsJWkT6PUGLknSJmHwS1LFGPzqK59dKw1er7NzSqfNZ9dKw6GnRy8Omo9e3Bx8dq3UX6f1zN1BM/g3B59dK/XXaT1zV1oPPrtWGg4Gv/rGZ9dKw8GTu+obn10rDQfH+CVpk3KMX5IElBz8EfH8iLgjIr4cEXMR8eqIeHdEPBERDxTL1WXWIElaquwx/t8G/jwzXx8RZwBnA68DPpCZ7yv5syVJyygt+CPiHOBy4JcAMvMIcCQiyvpISVIPyhzquRiYBz4SEfdHxIe6ntP71oh4MCI+HBE7VnkPSdI6KzP4twKXArdk5iuB7wE3A7cALwEuAQ4B719u54i4MSJmI2J2fn6+xDIlqVrKDP7Hgccz895i/Q7g0sx8KjOPZuZzwAeBy5bbOTNvzczxzBzfudPnukvSeikt+DPzG8BjEfHyoulK4K8j4sKuza4DnJ1Lkvqo7Kt6poA/Kq7oeRh4E/A7EXEJkMAjwJtLrkGS1KXU4M/MB4Dj7xr7xTI/U5K0Ou/claSKMfglqWIMfkmqGINfkirG4JekijH4JaliDH5JqhiDX5IqxuCXpIox+DV0ms0mtVqNkZERarUazWZz0CVJm0rZc/VIa9JsNmk0Guzbt4+JiQna7Tb1eh2AycnJAVcnbQ6RmYOu4aTGx8dzdnZ20GWoD2q1GtPT0+zZs+dYW6vVYmpqioMHnchVWouIOJCZx8+XZvBruIyMjHD48GG2bdt2rG1hYYHt27dz9OjRAVYmbTwrBb9j/Oqrk43fj46O0m63l7S1221GR0f7Waa0qRn86pvF8fvp6WkOHz7M9PQ0jUZjSfg3Gg3q9TqtVouFhQVarRb1ep1GozHAyqVNJjOHftm9e3dq4xsbG8uZmZklbTMzMzk2Nrakbf/+/Tk2NpZbtmzJsbGx3L9/fz/LlDYNYDaXyVTH+NU3jt9L/eUYvwbO8XtpOBj86hvH76Xh4A1c6pvFG7CmpqaYm5tjdHSUvXv3emOW1GeO8UvSJuUYvyQJMPglqXIMfkmqGINfkirG4JekijH4JaliDH5JqhiDX5IqxuCXpIox+CWpYgx+SaoYg1+SKsbgl6SKKTX4I+L5EXFHRHw5IuYi4tURcW5EfCYiHip+7iizBknSUmUf8f828OeZ+ePATwJzwM3A3Zn5UuDuYl2S1CelBX9EnANcDuwDyMwjmflt4BrgtmKz24Bry6pBknSiMo/4LwbmgY9ExP0R8aGIeB7wgsw8BFD8vGC5nSPixoiYjYjZ+fn5EsuUpGopM/i3ApcCt2TmK4HvsYZhncy8NTPHM3N8586dZdUoSZVTZvA/DjyemfcW63fQ+UPwVERcCFD8fLrEGiRJxykt+DPzG8BjEfHyoulK4K+Bu4AbirYbgE+UVYMk6URbS37/KeCPIuIM4GHgTXT+2NweEXXg68AbSq5BktSl1ODPzAeAE57wTufoX5I0AN65K0kVY/BLUsUY/JJUMQa/JFWMwS9JFWPwS1LFGPySVDEGvyRVjMEvSRVj8EtSxWza4G82m9RqNUZGRqjVajSbzUGXJElDoexJ2gai2WzSaDTYt28fExMTtNtt6vU6AJOTkwOuTpIGKzJz0DWc1Pj4eM7Ozva8fa1WY3p6mj179hxra7VaTE1NcfDgwTJKlKShExEHMvOEiTI3ZfCPjIxw+PBhtm3bdqxtYWGB7du3c/To0TJKlKShs1Lwb8ox/tHRUdrt9pK2drvN6OjogCqSpOGxKYO/0WhQr9dptVosLCzQarWo1+s0Go1BlyZJA7cpT+4unsCdmppibm6O0dFR9u7d64ldSWKTjvFLkio2xi9JWpnBL0kVY/BLUsUY/JJUMQa/JFXMhriqJyLmgUcHXQdwPvDNQRdxCqy7v6y7v6x7ZT+WmTuPb9wQwT8sImJ2uUujhp1195d195d1r51DPZJUMQa/JFWMwb82tw66gFNk3f1l3f1l3WvkGL8kVYxH/JJUMQa/JFWMwV+IiA9HxNMRcbCr7d0R8UREPFAsV3e99o6I+JuI+EpEvG4wVa+t7oi4KCL+X1f7fxmmuov2qaJPvxQR7+lqH4r+LmrpufZh7/OI+GhXbY9ExANdrw1Fn6+l7g3Q35dExOeK2mYj4rKu1/rX35np0jnPcTlwKXCwq+3dwK8ts+1PAF8AzgR2AV8FRjZA3Rd1bzeE/b0H+O/AmcX6BcPW36dQ+1D3+XGvvx9417D1+RrrHur+Bj4NXFX8fjXwPwbR3x7xFzLzHuCZHje/BvjjzHw2M78G/A1w2Un2KcUa6x4aK9T9FuC3MvPZYpuni/ah6e+irrXUPjRW+38lIgL4eaBZNA1Nn6+x7qGxQt0JnFP8/sPAk8Xvfe1vg//k3hoRDxZf23YUbS8EHuva5vGibZgsVzfAroi4PyL+IiJeM7Dqlvcy4DURcW9R398v2jdCf69UOwx3ny96DfBUZj5UrG+EPocT64bh7u9fBd4bEY8B7wPeUbT3tb8N/tXdArwEuAQ4ROcrJUAss+0wXRe7Ut2HgBdn5iuBfw3sj4hzln2HwdgK7ABeBfw6cHtxRDfs/Q0r1z7sfb5okqVHzRuhz+HEuoe9v98CvC0zfxR4G7CvaO9rfxv8q8jMpzLzaGY+B3yQH3z1ehz40a5NX8QPvrIN3Ep1F18jv1X8foDOOOLLBlfpCR4HPp4dnweeozOR1VD3d2HZ2jdAnxMRW4F/Cny0q3no+3y5ujdAf98AfLz4/WMMKFMM/lVExIVdq9cBi2fn7wKuj4gzI2IX8FLg8/2ubyUr1R0ROyNipPj9Yjp1P9z/Cld0J3AFQES8DDiDzuyFQ93fhTtZpvYN0OcArwW+nJmPd7VthD4/oe4N0N9PAv+o+P0KYHGIqr/9Pegz38Oy0Pm6eAhYoPPXtw78AfBF4MHiP8yFXds36BxNfIXiLP2w1w38M+BLdK4euA/4J0NW9xnAH9L5Q3UfcMWw9fdaax/2Pi/a/yvwL5bZfij6fC11D3t/AxPAgaK+e4Hdg+hvp2yQpIpxqEeSKsbgl6SKMfglqWIMfkmqGINfkirG4JcKEfGCiNgfEQ9HxIGI+GxEXLfCtndExI9ExJ9FxPOLtjMj4vZiqoy/ioif7Os/QOqRwS9xbLKvO4F7MvPizNwNXE/nDsru7bYCZObrM/PJzLw6M79dvPxG4NnMfAXwL4F39at+aS0MfqnjCuBIZh6bvz0zH83M6Yj4pYj4WER8Evh0RJwbEXcWR/afi4hXFLu8GPhCRLwK+M90bugCICJ+vfgW8GBE/Lt+/sOk420ddAHSkBijc6fnSl4NvCIzn4mIaeD+zLw2Iq4Afp/OhHiLE229Ebg9M/8EICJ+ls4t+JcV29wVEZdnZ9peqe884peWERG/GxFfiIi/Kpo+k5mLc6tP0JkWg8ycAc6LiB/u2r0JvDMiri3Wf7ZY7qfzx+XH6fwhkAbCI36p40t05nkBIDNviojzgdmi6Xtd2646hW5mfjYiLgc+GRFPF9v/p8z8vfUvW1o7j/iljhlge0S8pavt7BW2vQf45wAR8dPANzPzu4svRsTWzHwE+J/AKPAp4Jcj4oeK118YERes9z9A6pVH/BKQmVkMzXwgIt4OzNM5yv8N4KzjNn838JGIeBD4Pp051hdtAWY7FwnxDeDtmfndiBgFPlu0/1/gF4ChezyjqsHZOSWpYhzqkaSKMfglqWIMfkmqGINfkirG4JekijH4JaliDH5Jqpj/Dwnv6wC8BAhzAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Erzeuge Streudiagramm\n",
"fig, ax = plt.subplots()\n",
"ax.scatter(data[\"height\"], data[\"weight\"], color=\"white\", edgecolor=\"k\")\n",
"ax.set_xlabel(\"Größe\")\n",
"ax.set_ylabel(\"Gewicht\")"
]
},
{
"cell_type": "markdown",
"id": "3c92f076-1780-478c-be23-499da3c622f7",
"metadata": {},
"source": [
"Die visuelle Inspektion bestätigt unsere Vermutung, dass die Beziehung zwischen der Größe und der Gewichtsvariable ungefähr linear ist. Mit anderen Worten: Mit zunehmender Größe neigt der einzelne Student dazu, ein höheres Gewicht zu haben."
]
},
{
"cell_type": "markdown",
"id": "d9185098-f33a-42a4-a84a-1db41b2c0faf",
"metadata": {},
"source": [
"### Überprüfung der Hypothesen"
]
},
{
"cell_type": "markdown",
"id": "8bdc0ce4-d695-465f-9df6-da331dc76b17",
"metadata": {},
"source": [
"Zur Durchführung des **$t$-Test des Regressionskoeffizienten** folgen wir dem schrittweisen Durchführungsverfahren für Hypothesentests. Der **$t$-Test des Regressionskoeffizienten** folgt demselben schrittweisen Verfahren wie in den vorangegangenen Abschnitten beschrieben."
]
},
{
"cell_type": "markdown",
"id": "05ae1d7a",
"metadata": {},
"source": [
"|||\n",
"|---|---|\n",
"|Schritt 1| Geben Sie die Nullhypothese $H_0$ und alternative Hypothese $H_A$ an|\n",
"|Schritt 2|Legen Sie das Signifikanzniveau,$\\alpha$ fest|\n",
"|Schritt 3|Berechnen Sie den Wert der Teststatistik|\n",
"|Schritt 4|Bestimmen Sie den p-Wert|\n",
"|Schritt 5| Wenn $p \\le \\alpha$, $H_0$ ablehnen; ansonsten $H_0$ nicht ablehnen|\n",
"|Schritt 6|Interpretieren Sie das Ergebnis des Hypothesentests|"
]
},
{
"cell_type": "markdown",
"id": "18559db0-5bf0-44d2-a534-00ace0356dc2",
"metadata": {},
"source": [
"**Schritt 1 : Geben Sie die Nullhypothese $H_0$ und alternative Hypothese $H_A$ an**"
]
},
{
"cell_type": "markdown",
"id": "6022d3b6-7d68-4f39-8561-44dd92e216a5",
"metadata": {},
"source": [
"Die Nullhypothese besagt, dass es keinen linearen Zusammenhang zwischen der Größe und dem Gewicht der Personen im Datensatz der Studierenden gibt."
]
},
{
"cell_type": "markdown",
"id": "058cf2dd-1dcc-4f55-af47-3bcf3992b5d5",
"metadata": {},
"source": [
"$$H_0: \\beta_1=0\\text{ (die Vorhersagevariable ist für die Erstellung von Vorhersagen nicht geeignet)}$$"
]
},
{
"cell_type": "markdown",
"id": "356a18e5-af36-4d84-b44a-9ee9f99a8c7b",
"metadata": {},
"source": [
"**Alternative Hypothese**"
]
},
{
"cell_type": "markdown",
"id": "e8749a38-2c92-424a-b408-1ffa56d6bec9",
"metadata": {},
"source": [
"$$H_A: \\beta_1\\ne0\\text{ (die Vorhersagevariable ist für die Erstellung von Vorhersagen geeignet)}$$"
]
},
{
"cell_type": "markdown",
"id": "e695714a-8330-445d-8b4f-e4f06f199073",
"metadata": {},
"source": [
"**Schritt 2: Legen Sie das Signifikanzniveau,$\\alpha$ fest**"
]
},
{
"cell_type": "markdown",
"id": "0006780f-4c1f-4102-9de4-40feeb4cb23f",
"metadata": {},
"source": [
"$$\\alpha = 0,01$$"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "dff20f63-38ca-4d4f-bca2-664acdc62caa",
"metadata": {},
"outputs": [],
"source": [
"alpha = 0.01"
]
},
{
"cell_type": "markdown",
"id": "3436b6b1-63a6-4974-8915-4a62da937841",
"metadata": {},
"source": [
"**Schritt 3 und 4: Berechnen Sie den Wert der Teststatistik und den $p$-Wert**"
]
},
{
"cell_type": "markdown",
"id": "0e072910-ff80-40f8-9722-bcbb315f84bd",
"metadata": {},
"source": [
"Zur Veranschaulichung berechnen wir die Teststatistik manuell in Python. Erinnern Sie sich an die obige Gleichung."
]
},
{
"cell_type": "markdown",
"id": "ca1d3807-0ba0-4cf4-879a-8282950a3daf",
"metadata": {},
"source": [
"$$t =\\frac{\\beta_1}{s_b}= \\frac{\\beta_1}{s_e/\\sqrt{\\sum(x- \\bar x)^2}}$$"
]
},
{
"cell_type": "markdown",
"id": "0886613b-52c0-4fc7-b765-67a1a5bb52bb",
"metadata": {},
"source": [
"wobei $\\beta_1 = \\frac{cov(x,y)}{var(x)}$, und"
]
},
{
"cell_type": "markdown",
"id": "dfe1ec95-4f2c-473c-abf9-a378f8b1eaa8",
"metadata": {},
"source": [
"$$s_e = \\sqrt{\\frac{SSE}{n-2}}\\text{,}$$"
]
},
{
"cell_type": "markdown",
"id": "b490759f-832a-4399-b465-070442d8cf58",
"metadata": {},
"source": [
"wobei $SSE = \\sum_{i=1}^n e_i^2 = \\sum_{i=1}^n (y - \\hat y)^2$. Die Teststatistik folgt einer $t$-Verteilung mit $df=n-2$. Um $\\hat y = \\beta_0+\\beta_1x$ zu berechnen, müssen wir $\\beta_0$ kennen, das als $\\beta_0 = \\bar y -\\beta_1 \\bar x$ berechnet wird."
]
},
{
"cell_type": "markdown",
"id": "15b3375b-23ba-456e-8eb2-07c35ceb3a2c",
"metadata": {},
"source": [
"Um nicht durch die verschiedenen Berechnungsschritte verwirrt zu werden, führen wir einen Schritt nach dem anderen durch.\n",
"\n",
"- Erstellen Sie das lineare Modell durch Berechnung des Achsenabschnitts ($β_0$) und des Regressionskoeffizienten ($β_1$)."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e452c980-4e75-4309-8049-d9e34258843f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.6507615230460922"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y_bar = data[\"weight\"].mean()\n",
"x_bar = data[\"height\"].mean()\n",
"\n",
"# Lineares Modell\n",
"beta1 = np.cov(data[\"height\"], data[\"weight\"]) / data[\"height\"].var()\n",
"beta1[0][1]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "9684fce9-581d-467a-b23c-e46679c0f3f9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"-39.44320641282566"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"beta0 = y_bar - beta1[0][1] * x_bar\n",
"beta0"
]
},
{
"cell_type": "markdown",
"id": "f27cee18-2ebd-4a2d-b0de-e58c5140a627",
"metadata": {},
"source": [
"Berechnen Sie die Summe der quadrierten Fehler ($SSE$) und den Reststandardfehler ($s_e$)."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "e6b2a0c4-31da-48e8-9a77-f791f4db9e02",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"30.38618436873755"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Berechne SSE\n",
"y_hat = beta0 + beta1[0][1] * data[\"height\"]\n",
"SSE = sum((data[\"weight\"] - y_hat) ** 2)\n",
"SSE"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "88ae353f-16f6-4259-90a2-d6c1ccec3451",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.743163341994592"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Berechne Reststandardfehler\n",
"se = np.sqrt(SSE / (n - 2))\n",
"se"
]
},
{
"cell_type": "markdown",
"id": "594ba7cb-99f7-4c5f-b025-46a6682a41fb",
"metadata": {},
"source": [
"- Berechnen Sie den Wert der Teststatistik."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0d85223c-8560-4da4-afad-a6695aa5f1d1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10.766100516207496"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Berechne Teststatistik\n",
"tw = beta1[0][1] / (se / np.sqrt(sum((data[\"height\"] - x_bar) ** 2)))\n",
"tw"
]
},
{
"cell_type": "markdown",
"id": "78d260e9-d0cf-4e61-ae64-81f8b71894c6",
"metadata": {},
"source": [
"Der numerische Wert der Teststatistik ist $\\approx 10,7661$.\n",
"\n",
"Um den $p$-Wert zu berechnen, wenden wir die Funktion `t.cdf()` an. Erinnern Sie sich daran, wie man die Freiheitsgrade berechnet."
]
},
{
"cell_type": "markdown",
"id": "d71f3bb6-627b-4025-a742-1144bdd2383c",
"metadata": {},
"source": [
"$$df = n - 2= 10$$"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "dda09562-e9b2-4fd7-bd6e-4678fa6c4213",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8.048424329265031e-07"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Berechne p-Wert\n",
"df = data.shape[0] - 2\n",
"\n",
"# zweiseitiger Test\n",
"p_upper = t.sf(abs(tw), df=df)\n",
"p_lower = t.cdf(-abs(tw), df=df)\n",
"p = p_upper + p_lower\n",
"p"
]
},
{
"cell_type": "markdown",
"id": "ed9b1b0b-32c1-4424-85a0-ba3b011bc952",
"metadata": {},
"source": [
"**Schritt 5: Wenn $p \\le \\alpha , H_0$ ablehnen; ansonsten $H_0$ nicht ablehnen**"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "f6c051c1-d7b2-4192-b99d-77553658700c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p <= alpha"
]
},
{
"cell_type": "markdown",
"id": "64d241d4-6b90-48af-bce1-b4f854b66fd0",
"metadata": {},
"source": [
"Der $p$-Wert ist kleiner als das angegebene Signifikanzniveau von $0,01$; wir verwerfen $H_0$. Die Testergebnisse sind statistisch signifikant auf dem $1 \\%$-Niveau und liefern einen sehr starken Beweis gegen die Nullhypothese."
]
},
{
"cell_type": "markdown",
"id": "4f80c4b7-4ed1-4c84-8c97-8eb9b220d34a",
"metadata": {},
"source": [
"**Schritt 6: Interpretieren Sie das Ergebnis des Hypothesentests**"
]
},
{
"cell_type": "markdown",
"id": "777fda34-e756-4af6-b2bf-54cd2ae0b062",
"metadata": {},
"source": [
"$p=8,0484243 \\cdot 10^{-7}$. Bei einem Signifikanzniveau von $1 \\%$ lassen die Daten den Schluss zu, dass die Variable Größe ein guter Schätzer für das Gewicht der Studenten ist."
]
},
{
"cell_type": "markdown",
"id": "3ae02d0e-2085-498a-93af-ac0755a21385",
"metadata": {},
"source": [
"### Hypothesentests in Python"
]
},
{
"cell_type": "markdown",
"id": "a7359c64-3bea-4b39-a06a-9eb99d86ac36",
"metadata": {},
"source": [
"Wir haben gerade einen **$t$-Test des Regressionskoeffizienten** in Python manuell berechnet. Das ist in Ordnung, aber wir können dasselbe in Python mit nur ein paar Zeilen Code tun!\n",
"\n",
"Daher müssen wir die Funktion `linregress()` auf unsere Antwortvariable `weight` und unsere Vorhersagevariable `height` anwenden."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "e125ae05-2e0f-4e1d-a8df-390e8538f478",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"p-value 8.048424329264974e-07\n"
]
}
],
"source": [
"gradient, intercept, r_value, p_value, stderr = linregress(\n",
" data[\"height\"], data[\"weight\"]\n",
")\n",
"print(\"p-value\", p_value)"
]
},
{
"cell_type": "markdown",
"id": "2892abc2-759b-4227-844a-e0e3dafbfc10",
"metadata": {},
"source": [
"Für den Vergleich mit den manuell berechneten Werten extrahieren wir den Achsenabschnitt $\\beta_0$ und die Steigung $\\beta_1$"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "b8b5c8a7-06fe-4887-b70a-da03dc2df4ca",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Achsenabschnitt: -39.44320641282566\n",
"Steigung: 0.6507615230460922\n"
]
}
],
"source": [
"print(f\"Achsenabschnitt: {intercept}\")\n",
"print(f\"Steigung: {gradient}\")"
]
},
{
"cell_type": "markdown",
"id": "b99799c6-8f1d-466c-8788-596f97f989c5",
"metadata": {},
"source": [
"Vergleichen Sie die Ausgabe mit unseren Ergebnissen von oben. Sie passen perfekt!"
]
},
{
"cell_type": "markdown",
"id": "e699a0a2-d5a1-4d96-874e-22d5d4732589",
"metadata": {},
"source": [
"## Inferenzstatistik - Der lineare Korrelationskoeffizienten"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "d54b5bd4-d146-4dce-b73d-3e3ebce8353e",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from random import sample\n",
"from scipy.stats import t, pearsonr"
]
},
{
"cell_type": "markdown",
"id": "9aa2f88c-860d-4ab4-9dda-40730f6f4808",
"metadata": {},
"source": [
"Um zu prüfen, ob zwei Variablen linear korreliert sind, d. h. ob eine lineare Beziehung zwischen den beiden Variablen besteht, können wir den so genannten **$t$-Test zur Prüfung des Korrelationskoeffizienten** anwenden. Der **lineare Korrelationskoeffizient der Grundgesamtheit**, $\\rho$, misst die lineare Korrelation zweier Variablen auf die gleiche Weise wie der **lineare Korrelationskoeffizient der Stichprobe**, $r$, die lineare Korrelation zweier Variablen einer Stichprobe von Paaren misst. Sowohl $\\rho$ als auch $r$ beschreiben die Stärke der linearen Beziehung zwischen zwei Variablen; $r$ ist jedoch eine Schätzung von $\\rho$ der aus Stichprobendaten gewonnen wird.\n",
"\n",
"Der lineare Korrelationskoeffizient von zwei Variablen liegt zwischen $-1$ und $1$. Bei $\\rho=0$ sind die Variablen linear unkorreliert, es besteht also keine lineare Beziehung zwischen den Variablen. Bei $\\rho \\ne 0$ sind die Variablen linear korreliert. Wenn $\\rho \\gt 0$, sind die Variablen positiv linear korreliert, und wenn $\\rho \\lt 0$ sind die Variablen negativ linear korreliert.\n",
"\n",
"Eine häufig verwendete Statistik zur Berechnung der linearen Beziehung zwischen quantitativen Variablen ist der Pearson-Produkt-Moment-Korrelationskoeffizient. Er ist gegeben durch"
]
},
{
"cell_type": "markdown",
"id": "079d940e-0987-463a-a3a6-259836f35b6b",
"metadata": {},
"source": [
"$$r = \\frac{\\sum_{i=1}^n(x_i- \\bar x)(y_i - \\bar y)}{\\sqrt{\\sum_{i=1}^n(x_i- \\bar x)^2}\\sqrt{\\sum_{i=1}^n(y_i- \\bar y)^2}}=\\frac{s_{xy}}{s_x s_y}\\text{,}$$"
]
},
{
"cell_type": "markdown",
"id": "8d0d9c21-b9c1-44c9-a35d-8dd372468f6f",
"metadata": {},
"source": [
"wobei $s_{xy}$ die Kovarianz von $x$ und $y$ ist und $s_x$ und $s_y$ die Standardabweichungen von $x$ bzw. $y$ sind.\n",
"\n",
"Da der lineare Korrelationskoeffizient der Stichprobe, $r$ eine Schätzung des linearen Korrelationskoeffizienten der Grundgesamtheit, $\\rho$, ist, können wir $r$ für einen Hypothesentest für $\\rho$ verwenden. Die Teststatistik für einen Korrelationstest hat eine $t$-Verteilung mit $n-2$ Freiheitsgraden und kann wie folgt geschrieben werden"
]
},
{
"cell_type": "markdown",
"id": "95936e5a-6a6e-405d-8bb7-59e4cc2721f5",
"metadata": {},
"source": [
"$$t= \\frac{r}{\\sqrt{\\frac{1-r^2}{n-2}}}\\text{.}$$"
]
},
{
"cell_type": "markdown",
"id": "a877e630-93fa-490b-a8c8-1e7be6c10293",
"metadata": {},
"source": [
"### Der $t$-test zur Prüfung des Korrelationskoeffizienten: Ein Beispiel"
]
},
{
"cell_type": "markdown",
"id": "400a8db8-be8f-4660-a73a-eb3b6555efde",
"metadata": {},
"source": [
"Um den $t$-Test für den Korrelationskoeffizienten zu üben, laden wir den `students` Datensatz. Sie können die Datei `students.csv` hier herunterladen. Importieren Sie den Datensatz und geben Sie ihm einen passenden Namen."
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "19b8aad5-4186-491f-b3c3-885408546c32",
"metadata": {},
"outputs": [],
"source": [
"# Lese Datei students.csv als Dataframe ein; Indexspalte wird übersprungen\n",
"students = pd.read_csv(\"../../data/students.csv\", index_col=0)"
]
},
{
"cell_type": "markdown",
"id": "cdc9c56d-789e-4a6e-9a35-a4006ea256d3",
"metadata": {},
"source": [
"Der `students` Datensatz besteht aus $8239$ Zeilen, von denen jede einen bestimmten Studenten repräsentiert, und $16$ Spalten, von denen jede einer Variable/einem Merkmal entspricht, das sich auf diesen bestimmten Studenten bezieht. Diese selbsterklärenden Variablen sind: *stud_id, name, gender, age, height, weight, religion, nc_score, semester, major, minor, score1, score2, online_tutorial, graduated, salary.*"
]
},
{
"cell_type": "markdown",
"id": "e62c3aad-c898-417e-82b4-cba98103f184",
"metadata": {},
"source": [
"Um den $t$-Test für die Korrelation zu veranschaulichen, untersuchen wir die Beziehung zwischen den Variablen `score1` und `score2`, die das Ergebnis von zwei obligatorischen statistischen Prüfungen darstellen. **Die Frage ist, ob es eine lineare Beziehung zwischen den Noten von zwei aufeinanderfolgenden statistischen Prüfungen gibt?**"
]
},
{
"cell_type": "markdown",
"id": "a3b6f8b3-4891-40ef-9e81-805b111cd47f",
"metadata": {},
"source": [
"### Vorbereitung der Daten"
]
},
{
"cell_type": "markdown",
"id": "e25f18fa-b41b-438a-af59-aff1042d5851",
"metadata": {},
"source": [
"Wir beginnen mit der Datenvorbereitung.\n",
"\n",
"- Wir unterteilen den Datensatz anhand der Variablen `score1` und `score2`. Durch Anwendung der Funktion `dropna()` lassen wir alle `nan`-Werte im Datensatz aus.\n",
"- Dann ziehen wir aus jeder Teilmenge 50 Studierende und extrahieren die Variablen von Interesse."
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "bad3c8bf-243e-4aac-a5aa-65835415c491",
"metadata": {},
"outputs": [],
"source": [
"n = 50\n",
"data = students.dropna()[[\"score1\", \"score2\"]].sample(n, random_state=1)\n",
"\n",
"score1 = data[\"score1\"]\n",
"score2 = data[\"score2\"]"
]
},
{
"cell_type": "markdown",
"id": "ca8f3f40-9531-4849-93aa-790c6ff7b0f6",
"metadata": {},
"source": [
"Zum Zweck der visuellen Kontrolle stellen wir die Stichprobe in Form eines Streudiagramms dar."
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "79b710da-6d14-4e15-b5e1-5038d2b85bfb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'score2')"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAX7ElEQVR4nO3dfbDcVX3H8ffHBOSCYHgINESukQ5Cp6QQWAWlUpEnH6jEtKhUZqJS03EcATuljVOs0ykKFjvVPviQgTqp1lREDVQ7QIxa2zqiNwQaECJTIIEESQSCI0Qb8Ns/9rdwudnN3b3s2d/D+bxmMnv3ZO+937M3+d7ffM/5fY8iAjMzy8cLyg7AzMxGy4nfzCwzTvxmZplx4jczy4wTv5lZZmaXHUA/DjnkkFiwYEHZYZiZ1cq6det+GhFzp47XIvEvWLCAiYmJssMwM6sVSZu6jbvUY2aWGSd+M7PMOPGbmWXGid/MLDNO/GZmmanFrh4zsypavX4LV920ka07dnL4nDEuPftoFi+aX3ZY03LiNzObgdXrt/DBr25g566nAdiyYycf/OoGgMonf5d6zMxm4KqbNj6T9Dt27nqaq27aWFJE/XPiNzObga07dg40XiVO/GZmM3D4nLGBxqvEid/MbAYuPftoxvaa9Zyxsb1mcenZR5cUUf+8uGtmNgOdBVzv6jEzy8jiRfNrkeinSlrqkXSxpDsk3SnpkmLsIElrJN1TPB6YMgYzM3uuZIlf0rHAe4BXAscB50g6ClgOrI2Io4C1xXMzMxuRlFf8vwF8PyKejIingP8A3gKcC6wsXrMSWJwwBjMzmyJl4r8DOFXSwZL2Bd4IHAEcFhEPARSPh3b7ZEnLJE1Imti+fXvCMM3M8pJscTci7pL0MWAN8HPgduCpAT5/BbACoNVqRZIgzcxGpFdfnzL6/STd1RMR1wDXAEj6KPAg8LCkeRHxkKR5wLaUMZiZla1XX5+JTY/ylXVbRt7vJ/WunkOLx3FgCbAKuAFYWrxkKXB9yhjMzMrWq6/PqlseKKXfT+p9/F+RdDCwC3hfRDwm6UrgWkkXApuB8xLHYGZWql79e56O7lXs1P1+Upd6XtNl7BHg9JTf18ysSg6fM8aWLsl8ltQ1+afu9+NePWZmifXq63P+SUeU0u/HLRvMzBLbU1+f1ksPGvmuHkWPGlOVtFqtmJiYKDsMM7NakbQuIlpTx33Fb2ZWqOsZuoNy4jczo95n6A7Ki7tmZtT7DN1B+YrfzIzqnaGbsuzkK34zM6p1hm6n7LRlx06CZ8tOq9dvGcrXd+I3M6NaZ+imLju51GNmRrXO0E1ddnLiNzMrVOUM3V4tHoZVdnKpx8ysYlKXnXzFb2ZWManLTk78ZmYVlLLs5FKPmVlmnPjNzDLjxG9mlhknfjOzzDjxm5llxonfzCwzTvxmZplx4jczy4xv4DKzGcvlqMKmceI3sxnJ6ajCpnGpx8xmJKejCpvGid/MZqRqRxVa/1zqMWu4VHX41D3je/G6wvPnK36zBkt5dmsZRxWmPos2F078Zg2Wsg6/eNF8rliykPlzxhAwf84YVyxZmPTq2+sKw+FSj1mDpa7Dj/qoQq8rDEfSK35JH5B0p6Q7JK2StI+kgyStkXRP8XhgyhjMctar3p66Dp9K0+ZTlmSJX9J84CKgFRHHArOAtwPLgbURcRSwtnhuZgmUUYdPqWnzKUvqGv9sYEzSbGBfYCtwLrCy+PuVwOLEMZhlq4w6fEpNm09ZFBHpvrh0MfARYCdwc0S8Q9KOiJgz6TWPRcRu5R5Jy4BlAOPj4ydu2rQpWZxmZk0kaV1EtKaOpyz1HEj76v5lwOHAfpIu6PfzI2JFRLQiojV37txUYZqZZSdlqecM4L6I2B4Ru4CvAq8GHpY0D6B43JYwBjMzmyJl4t8MnCxpX0kCTgfuAm4AlhavWQpcnzAGMzObItk+/oi4RdJ1wK3AU8B6YAXwIuBaSRfS/uVwXqoYzMxsd0lv4IqIDwMfnjL8S9pX/2ZWI9165ADum1NDvnPXzKbVrff+pdfdDgG7fhXPjLkffz24V4+ZTatbj5xdT8czSb/DfXPqwVf8ZhVWlRbEg/TC2bpj58BxV2WeuXDiN6uoKh1t2Kv3fjdz9t1roLirNM9cuNRjVlFVakHcrUfOXrPEXi/Qc8bG9ppFBAPFXaV55sKJ36yiqtSCuFuPnKt+/ziuOu+43frmPL5zV9evMeh83Go5HZd6zLoYpObctKMNe+nVe3/q2FU3bRwo7kHn6fWA589X/GZTDHK8X9OONhyGQeMe5PU+enE4nPjNphik5ty0ow2HYdC4B3m91wOGw6UesykGqTk37WjDYRk07n5f7/WA4XDiN5tikJpz1erwVfd86/Op3+9c1g9c6jGbYpCac13r8GUYRn0+5fud0/qBE7/ZFIPUnOtahy/DMOrzKd/vnNYPXOox62KQGnVd6/CjNqz6fKr3O6f1Ayd+swprUs25rPWQft/DnNZrXOoxq6im1ZzLWA8Z5D3Mab3Gid+soppWcy5jPWSQ9zCn9RqXeswqqok151Gvhwz6HuayXuPEb9anXrXiXHr11JHfw+5c6jHrQ69a8WWrN7hXT4X5PezOid+sD71qxatuecC9eirM72F3LvWY9aFXTfjpiK7juffqqRK/h7tz4resPd893rOkrsm/iTXkJt1TkDuXeixbw9jjff5JR2RRQ27aPQW5c+K3bA1jj/flixdmUUNu2j0FuXOpx7I1rD3eOdSQm3hPQc6c+C1b7u3eP++HbxaXeixb7u3eP++HbxYnfsuWe7v3z/vhmyVZqUfS0cCXJg0dCfwF8M/F+ALgfuCtEfFYqjjM9sS93fuXw1pGLpIl/ojYCBwPIGkWsAX4GrAcWBsRV0paXjz/s1RxmJVhTzXxy1ZvYNUtD/B0BLMkzj/pCC5fvLCEKNNp0vpGE42q1HM68L8RsQk4F1hZjK8EFo8oBrOR6VUTX3DwGF/4/uZnbvp6OoIvfH8zl63eUEaYSTRtfaOJ+kr8kvbqMnbIAN/n7cCq4uPDIuIhgOLx0AG+jlkt9KqJf//e7lXNVbc8MNoAE2ra+kYT7bHUI+k04PPACyWtB5ZFxP3FX98MnDDdN5C0N/Bm4IODBCZpGbAMYHx8fJBPNRupXqWbbjXxS750W9ev0avnTx1VbX3DZafdTXfF/9fA2RExF1gBrJF0cvF36vN7vAG4NSIeLp4/LGkeQPG4rdsnRcSKiGhFRGvu3Ll9fiuz0bps9YaBSjez1P2/Ta/xOuq1t7+MPf8uO3U3XeLfOyLuBIiI62jX41dKegvQ7yXK+Txb5gG4AVhafLwUuL7vaM0qpleJptf4+ScdMdB4HVVpz7/LTt1Nt6tnl6Rfi4ifAETEnZJOB74O/Pp0X1zSvsCZwB9NGr4SuFbShcBm4LwZRW5WAb1KNL3GO7t3mryrp1NGqUJ5pWplp6qYLvEvBw4DftIZiIgHJb0WeN90XzwingQOnjL2CO1dPma116st855KN5cvXtioRN9NVfb8u9VEd3ss9UTENyPidgBJY8VNWUTEjoj4yCgCNKuyHEo3dValslOV9Lud83eB24Abi+fHS7ohYVxmtXD54oVccPL4M1f4syQuOHm88Vf0deFWE90p+thGJmkd8DrgOxGxqBjbEBEj+dfdarViYmJiFN/KzKwxJK2LiNbU8X5bNjwVEY/ruXXL5mw8tmx5j7flqN/Ef4ekPwBmSToKuAj4XrqwzNLr7PHubPfr7PEGnPyt0frt1fN+4DeBXwJfBB4HLkkUk9lIeI+35WraK/6is+YNEXEG8OfpQzIbDe/xtlxNm/gj4mlJT0p6cUQ8PoqgzEZh0D3edVgPqEOMVr5+a/y/ADZIWgM80RmMiIuSRGU2ApeeffRzavzQe493HdYD6hCjVUO/Nf5vAB8Cvgusm/THrLYG2eNdh/WAOsRo1dDXFX9ErCzaK7+8GNoYEbvShWU2Gv22FqjDekAdYrRq6PfO3dcC9wD/CHwK+LGkU9OFZVYtVWo13EsdYrRq6LfU8zfAWRHxOxFxKnA28LfpwjKrltOO6X4mRK/xMrgvjfWr38XdvYrD0wGIiB93O47RrKm+fff2gcbLUKV2yFZt/Sb+CUnX0D6GEeAdeHHXMlKX+nlV2iFbtfWb+N9Lu//+RbSPXPwu7Vq/WRaG2dfde+2tbP3W+GcDn4yIJRHxFuDvgFnTfI5ZYwyrfu4zYK0K+k38a4HJlzZjwDeHH45ZNQ2rr7v32lsV9Fvq2Scift55EhE/L87TNcvGMOrndVkrsGbrN/E/IemEiLgVQFIL8L/UDDWtPj3q+fgMWKuCfhP/xcCXJW2lfQDL4cDbkkVlldS0XjBlzGeQ/kBmqfRb438ZsIj27p41wEZ8Ald2mlafLmM+PgPWqqDfK/4PRcSXJc0BzqR9J++ngZNSBWbV07T6dFnz8V57K1u/V/ydy6I3AZ+JiOuBvdOEZFXVtF4wTZuPWb/6TfxbJH0WeCvw75JeOMDnWkM0rRdM0+Zj1q9+Sz1vBV4PfDwidkiaB1yaLiyroqb1gmnafMz6pYjqr9G2Wq2YmJgoOwwzs1qRtC4iWlPHXa4xM8uME7+ZWWac+M3MMtPv4u6MFPv+rwaOpX3D17tp3/z1JWABcD/w1oh4LGUcTVDXVgl1jdusyVJf8X8SuDEijgGOA+4ClgNrI+Io2l0/lyeOofbq2sq3rnGbNV2yxC/pAOBU4BqAiPi/iNgBnAusLF62ElicKoamqGurhLrGbdZ0Ka/4jwS2A5+TtF7S1ZL2Aw6LiIcAisdDu32ypGWSJiRNbN9enXNNy1DXVgl1jdus6VIm/tnACcCnI2IR8AQDlHUiYkVEtCKiNXfu3FQx1kJdWwukjnv1+i2ccuW3eNnyb3DKld9yCcmsTykT/4PAgxFxS/H8Otq/CB4u7vyleNyWMIZGqGtrgZRxe/3AbOaSJf6I+AnwgKTO//LTgR8BNwBLi7GlwPWpYmiKurbyTRm31w/MZi7pdk7g/cC/SNobuBd4F+1fNtdKuhDYDJyXOIZGqGsr31Rxe/3AbOaSJv6IuA3YrU8E7at/sxnzEYZmM+c7d62W6rruYVYFqUs9Zkm4pbLZzDnxW23Vdd3DrGwu9ZiZZcaJ38wsM078ZmaZceI3M8uME7+ZWWac+M3MMuPEb2aWGSd+M7PM+AaumhjG2bU+/9bMwIm/Fjq95zttiDu954G+E/cwvoaZNYNLPTUwjN7z7l9vZh1O/DUwjN7z7l9vZh1O/DUwjLNr63pur5kNnxN/DQyj97z715tZhxd3a2AYvefdv97MOpz4a8K9581sWJz4M+HtnGbW4Rp/Jryd08w6nPgz4e2cZtbhxJ8Jb+c0sw4n/kx4O6eZdXhxNxPezmlmHU78GfGWUDMDJ/5GcvtlM9sTJ/6G8X59M5uOF3cbxvv1zWw6TvwN4/36ZjadpIlf0v2SNki6TdJEMXaQpDWS7ikeD0wZQ268X9/MpjOKK/7TIuL4iGgVz5cDayPiKGBt8dyGxPv1zWw6ZZR6zgVWFh+vBBaXEENjLV40nyuWLGT+nDEEzJ8zxhVLFnph18yeoYhI98Wl+4DHgAA+GxErJO2IiDmTXvNYROxW7pG0DFgGMD4+fuKmTZuSxWlm1kSS1k2qtjwj9XbOUyJiq6RDgTWS7u73EyNiBbACoNVqpfvtZGaWmaSlnojYWjxuA74GvBJ4WNI8gOJxW8oYzMzsuZIlfkn7Sdq/8zFwFnAHcAOwtHjZUuD6VDGYmdnuUpZ6DgO+Jqnzfb4YETdK+iFwraQLgc3AeQljMDOzKZIl/oi4Fziuy/gjwOmpvm+H+9WYmXXXyF497ldjZtZbI1s2uF+NmVlvjUz87ldjZtZbIxO/+9WYmfXWyMR/2jFzBxo3M8tJIxP/t+/ePtC4mVlOGpn4XeM3M+utkYnfNX4zs94amfjdk97MrLdG3sDVuUnLd+6ame2ukYkf2sl/kETvFg9mlovGJv5BuMWDmeWkkTX+QbnFg5nlxIkfb/80s7y41EN7m+eWLkm+Sts/vQZhZsPiK36qv/2zswaxZcdOgmfXIFav31J2aGZWQ078tBdwr1iykPlzxhAwf84YVyxZWJkraq9BmNkwudRTGHT75yh5DcLMhslX/DXgFhRmNkxO/DVQ9TUIM6sXl3pqwC0ozGyYnPhrosprEGZWLy71mJllxonfzCwzTvxmZplx4jczy4wXd0vi3jtmVhYn/hK4/7+ZlcmlnhK4946ZlcmJvwTuvWNmZUqe+CXNkrRe0teL5wdJWiPpnuLxwNQxVI1775hZmUZxxX8xcNek58uBtRFxFLC2eJ4V994xszIlTfySXgK8Cbh60vC5wMri45XA4pQxVFHV+/+bWbOl3tXzCeBPgf0njR0WEQ8BRMRDkg7t9omSlgHLAMbHxxOHOXruvWNmZUl2xS/pHGBbRKybyedHxIqIaEVEa+7cuUOOzswsXymv+E8B3izpjcA+wAGSvgA8LGlecbU/D9iWMAYzM5si2RV/RHwwIl4SEQuAtwPfiogLgBuApcXLlgLXp4rBzMx2V8Y+/iuBMyXdA5xZPDczsxEZScuGiPgO8J3i40eA00fxfc3MbHeKiLJjmJak7cCmEX27Q4Cfjuh7lSWHOUIe8/QcmyPFPF8aEbvtjqlF4h8lSRMR0So7jpRymCPkMU/PsTlGOU/36jEzy4wTv5lZZpz4d7ei7ABGIIc5Qh7z9BybY2TzdI3fzCwzvuI3M8uME7+ZWWayT/w5HBQj6X5JGyTdJmmiGGvUPCXNkXSdpLsl3SXpVU2ao6Sji59f58/PJF3SpDl2SPqApDsl3SFplaR9mjZPSRcX87tT0iXF2MjmmH3iJ5+DYk6LiOMn7RNu2jw/CdwYEccAx9H+mTZmjhGxsfj5HQ+cCDwJfI0GzRFA0nzgIqAVEccCs2j3+mrMPCUdC7wHeCXtf6vnSDqKUc4xIrL9A7ykeINfB3y9GNsIzCs+ngdsLDvOIczzfuCQKWONmSdwAHAfxWaFJs5xyrzOAv67iXME5gMPAAfRbinz9WK+jZkncB5w9aTnH6J9bsnI5pj7Ff8naL/hv5o09pyDYoCuB8XUTAA3S1pXHHADzZrnkcB24HNF2e5qSfvRrDlO9nZgVfFxo+YYEVuAjwObgYeAxyPiZpo1zzuAUyUdLGlf4I3AEYxwjtkm/ud7UEzNnBIRJwBvAN4n6dSyAxqy2cAJwKcjYhHwBDUuBeyJpL2BNwNfLjuWFIq69rnAy4DDgf0kXVBuVMMVEXcBHwPWADcCtwNPjTKGbBM/zx4Ucz/wr8DrJh8UA9CUg2IiYmvxuI12XfiVNGueDwIPRsQtxfPraP8iaNIcO94A3BoRDxfPmzbHM4D7ImJ7ROwCvgq8mobNMyKuiYgTIuJU4FHgHkY4x2wTf2RyUIyk/STt3/mYdr30Dho0z4j4CfCApKOLodOBH9GgOU5yPs+WeaB5c9wMnCxpX0mi/bO8i4bNs3PWuKRxYAntn+nI5ug7dwFJrwX+JCLOkXQwcC0wTvsf4XkR8WiJ4T0vko6kfZUP7ZLIFyPiIw2c5/HA1cDewL3Au2hf2DRpjvvSXvg8MiIeL8Ya9XMEkPSXwNtolz/WA38IvIgGzVPSfwIHA7uAP46ItaP8WTrxm5llJttSj5lZrpz4zcwy48RvZpYZJ34zs8w48ZuZZcaJ32wEitvzvy3p55L+oex4LG+zyw7ArCkkzY6IXrfe/4J2M65jiz9mpfEVv2WtuLP5G5JuL/qjv03SKyR9rxj7gaT9i57wnyvONVgv6bTi898p6cuS/o12I7z9JP2TpB8WrzsXICKeiIj/ov0LwKxUvuK33L0e2BoRbwKQ9GLad4u+LSJ+KOkAYCftcxuIiIWSjqGd5F9efI1XAb8VEY9K+ijt9h/vljQH+IGkb0bEEyOel1lPvuK33G0AzpD0MUmvoX27/EMR8UOAiPhZUb75beDzxdjdwCagk/jXTLq1/ixguaTbgO8A+xRf06wyfMVvWYuIH0s6kXZP9CuAm2mfXzCV9vBlJl/NC/i9iNg4vCjNhstX/JY1SYcDT0bEF2gfAHIycLikVxR/v7+k2cB3gXcUYy+nfRXfLbnfBLy/6CyJpEXpZ2E2GF/xW+4WAldJ+hXtTonvpX3V/veSxmjX988APgV8RtIG2l0j3xkRvyzy+2R/Rftkt/8pkv/9wDnQPvSe9jGRe0taDJwVET9KOTmzbtyd08wsMy71mJllxonfzCwzTvxmZplx4jczy4wTv5lZZpz4zcwy48RvZpaZ/wf6GYocIM0y3AAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Erzeuge Streudiagramm\n",
"fig, ax = plt.subplots()\n",
"ax.scatter(x=score1, y=score2)\n",
"ax.set_xlabel(\"score1\")\n",
"ax.set_ylabel(\"score2\")"
]
},
{
"cell_type": "markdown",
"id": "d79090e2-8c03-4f91-8dd0-1c708ab2368c",
"metadata": {},
"source": [
"Die visuelle Inspektion zeigt, dass eine positive lineare Beziehung zwischen den Variablen `score1` und `score2` besteht."
]
},
{
"cell_type": "markdown",
"id": "010d1223-4406-446a-be13-87b2923f9782",
"metadata": {},
"source": [
"### Überprüfung der Hypothesen"
]
},
{
"cell_type": "markdown",
"id": "46591620-868a-4413-91a5-20a4e8327698",
"metadata": {},
"source": [
"Zur Durchführung des $t$-Tests für die Korrelation folgen wir dem schrittweisen Durchführungsverfahren für Hypothesentests. Der $t$-Test für die Korrelation folgt demselben schrittweisen Verfahren wie in den vorangegangenen Abschnitten beschrieben. "
]
},
{
"cell_type": "markdown",
"id": "fc2d1464",
"metadata": {},
"source": [
"|||\n",
"|---|---|\n",
"|Schritt 1| Geben Sie die Nullhypothese $H_0$ und alternative Hypothese $H_A$ an|\n",
"|Schritt 2|Legen Sie das Signifikanzniveau,$\\alpha$ fest|\n",
"|Schritt 3|Berechnen Sie den Wert der Teststatistik|\n",
"|Schritt 4|Bestimmen Sie den p-Wert|\n",
"|Schritt 5| Wenn $p \\le \\alpha$, $H_0$ ablehnen; ansonsten $H_0$ nicht ablehnen|\n",
"|Schritt 6|Interpretieren Sie das Ergebnis des Hypothesentests|"
]
},
{
"cell_type": "markdown",
"id": "fbdd101d-8045-4e19-8033-4f4d69f14ddf",
"metadata": {},
"source": [
"**Schritt 1 : Geben Sie die Nullhypothese $H_0$ und alternative Hypothese $H_A$ an**"
]
},
{
"cell_type": "markdown",
"id": "a7abc1b2-7a30-4f60-9b08-1925909d51ab",
"metadata": {},
"source": [
"Die Nullhypothese besagt, dass es keinen linearen Zusammenhang zwischen den Noten von zwei aufeinanderfolgenden Statistikprüfungen gibt."
]
},
{
"cell_type": "markdown",
"id": "c4803419-8454-484a-ba83-db836f41f1d3",
"metadata": {
"tags": []
},
"source": [
"$$H_0: r = 0$$"
]
},
{
"cell_type": "markdown",
"id": "8c5d6c80-a2cf-429f-bdf6-3848fc971ed8",
"metadata": {},
"source": [
"Erinnern Sie sich daran, dass die Formulierung der Alternativhypothese vorgibt, ob wir einen zweiseitigen, einen links- oder einen rechtsseitigen Hypothesentest durchführen."
]
},
{
"cell_type": "markdown",
"id": "da28da06-9620-43ec-8918-d200ff59daa0",
"metadata": {},
"source": [
"**Alternative Hypothese**"
]
},
{
"cell_type": "markdown",
"id": "7512112a-af4d-4553-a619-68cfcffc76f5",
"metadata": {},
"source": [
"$$H_A: r \\ne 0$$"
]
},
{
"cell_type": "markdown",
"id": "89dd1cbf-4123-46b4-9337-5c7980b4feea",
"metadata": {},
"source": [
"Diese Formulierung führt zu einem zweiseitigen Hypothesentest."
]
},
{
"cell_type": "markdown",
"id": "70be5651-7be6-4d9b-b4c3-87e8c690315e",
"metadata": {},
"source": [
"**Schritt 2: Legen Sie das Signifikanzniveau,$\\alpha$ fest**"
]
},
{
"cell_type": "markdown",
"id": "eb63d541-1bfd-4f6d-9e40-3093ac20cf1a",
"metadata": {},
"source": [
"$$\\alpha = 0,01$$"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "3690ac32-4efb-4677-8930-ff3f8b030487",
"metadata": {},
"outputs": [],
"source": [
"alpha = 0.01"
]
},
{
"cell_type": "markdown",
"id": "e02c02a6-3800-4ad3-8bc4-15f249e0ef08",
"metadata": {},
"source": [
"**Schritt 3 und 4: Berechnen Sie den Wert der Teststatistik und den $p$-Wert**"
]
},
{
"cell_type": "markdown",
"id": "acb4e1c4-47d6-45da-bce3-51bb2a392fde",
"metadata": {},
"source": [
"Zur Veranschaulichung berechnen wir die Teststatistik manuell in Python. Erinnern Sie sich an die obige Gleichungsform:"
]
},
{
"cell_type": "markdown",
"id": "a1bace8f-fbee-462e-a263-cb2af5280fc5",
"metadata": {},
"source": [
"$$t= \\frac{r}{\\sqrt{\\frac{1-r^2}{n-2}}}$$"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "91ea7b6c-a5fb-43b4-89d6-b2286c9d9dc3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"14.846357121994247"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"n = len(score1)\n",
"\n",
"# Berechne Teststatistik\n",
"# Berechne PearsonKorrelationskoefficient r\n",
"r = np.corrcoef(score1, score2)[0][1]\n",
"\n",
"# Teststatistik\n",
"tw = r / np.sqrt((1 - r**2) / (n - 2))\n",
"tw"
]
},
{
"cell_type": "markdown",
"id": "0e3ff0f9-0c24-4962-8c5f-69d606591ab1",
"metadata": {},
"source": [
"Der numerische Wert der Teststatistik ist $14,846357$.\n",
"\n",
"Um den $p$-Wert zu berechnen, wenden wir die Funktion `t.cdf()` an. Erinnern Sie sich daran, wie man die Freiheitsgrade berechnet:"
]
},
{
"cell_type": "markdown",
"id": "152c3f51-46de-4645-9c76-e553d796f164",
"metadata": {},
"source": [
"$$df = n - 2= 48$$"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "5df09f65-d56a-4a91-94e5-c9c172190e4f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.4401962006630608e-19"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Berechne den p-Wert\n",
"df = len(score1) - 2\n",
"\n",
"# zweiseitiger Test\n",
"p_upper = t.sf(abs(tw), df=df)\n",
"p_lower = t.cdf(-abs(tw), df=df)\n",
"p = p_upper + p_lower\n",
"p"
]
},
{
"cell_type": "markdown",
"id": "b167bed5-7df3-411b-be6c-5b57a54b6dce",
"metadata": {
"tags": []
},
"source": [
"**Schritt 5: Wenn $p \\le \\alpha , H_0$ ablehnen; ansonsten $H_0$ nicht ablehnen**"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "6f1fcdb6-7639-4efb-9d18-2a3d6f5ed4d9",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p <= alpha"
]
},
{
"cell_type": "markdown",
"id": "1da10e36-207e-4f88-bea3-39558726523a",
"metadata": {},
"source": [
"Der $p$-Wert ist kleiner als das angegebene Signifikanzniveau von $0,01$; wir verwerfen $H_0$. Die Testergebnisse sind statistisch signifikant auf dem $1 \\%$-Niveau und liefern einen sehr starken Beweis gegen die Nullhypothese."
]
},
{
"cell_type": "markdown",
"id": "16b7e3a5-d850-4056-8315-91ae32ae1884",
"metadata": {},
"source": [
"**Schritt 6: Interpretieren Sie das Ergebnis des Hypothesentests**"
]
},
{
"cell_type": "markdown",
"id": "e9a99426-38cc-42e3-919e-ddfb26df2198",
"metadata": {},
"source": [
"$p=1,4401962 \\cdot 10^{-19}$. Bei einem Signifikanzniveau von $1 \\%$ lassen die Daten den Schluss zu, dass die Prüfungsnoten der Studenten linear korreliert sind."
]
},
{
"cell_type": "markdown",
"id": "b2bc7171-9c01-468a-9729-5af59cfa382a",
"metadata": {},
"source": [
"### Hypothesentests in Python"
]
},
{
"cell_type": "markdown",
"id": "0eabdd61-3420-44db-b203-001af5da609e",
"metadata": {},
"source": [
"Wir haben soeben einen $t$-test zur Prüfung des Korrelationskoeffizienten in Python manuell durchgeführt. Wir können dasselbe in Python mit nur einer Zeile Code tun!\n",
"\n",
"Dazu wenden wir die Funktion `pearsonr()` an. Für die Funktion verwenden wir die zwei Vektoren, `score1` und `score2`, als Dateneingabe."
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "fcfde383-2048-41c9-8352-ac53ed1c524d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Korrelationskoeffizient: 0.9061854032279849\n",
"p - Wert: 1.4401962006631032e-19\n"
]
}
],
"source": [
"r, p_value = pearsonr(score1, score2)\n",
"print(f\"Korrelationskoeffizient: {r}\")\n",
"print(f\"p - Wert: {p_value}\")"
]
},
{
"cell_type": "markdown",
"id": "6edaf417-f5ab-43d9-87cf-6b3053b9756c",
"metadata": {},
"source": [
"Perfekt! Vergleichen Sie die Ausgabe der Funktion `pearsonr()` mit unserem Ergebnis von oben. Darüber hinaus gibt die Funktion den Pearson-Korrelationskoeffizienten für die Beispieldaten aus. Aus der Ausgabe der Funktion `pearsonr()` können wir schließen, dass die Daten bei einem Signifikanzniveau von $1 \\%$ sehr starke Hinweise darauf liefern, dass die Prüfungsnoten der Studenten linear korreliert sind."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.2"
},
"vscode": {
"interpreter": {
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}